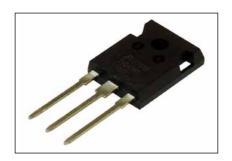


FGW40N120WD

Discrete IGBT

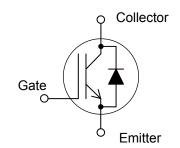

Discrete IGBT (High-Speed V series) 1200V / 40A

■ Features

Low power loss Low switching surge and noise High reliability, high ruggedness (RBSOA, SCSOA etc.)

Applications

Uninterruptible power supply PV Power coditionner Inverter welding machine



■ Equivalent circuit

■ Maximum Ratings and Characteristics

● Absolute Maximum Ratings (at T_c=25°C unless otherwise specified)

Items	Symbols	Characteristics	Units	Remarks
Collector-Emitter voltage	Vces	1200	V	
Gate-Emitter voltage	V _{GES}	±20	V	
DC Collector Current	Ic@25	65	Α	Tc=25°C, Tj=150°C
	Ic@100	40	Α	Tc=100°C, Tj=150°C
Pulsed Collector Current	I _{CP}	160	Α	Note *1
Turn-Off Safe Operating Area	-	160	Α	Vce≤1200V, Tj≤175°C
Diode Forward Current	F@25	36	Α	
	IF@100	20	Α	
Diode Pulsed Current	I _{FP}	160	Α	Note *1
Short Circuit Withstand Time	tsc	5	μs	Vcc≤600V, VgE=15V Tj≤150°C
IGBT Max. Power Dissipation	P _{D_IGBT}	360	W	Tc=25°C
FWD Max. Power Dissipation	P _{D_FWD}	125	٧V	Tc=25°C
Operating Junction Temperature	T _j	-40~+175	°C	
Storage Temperature	T _{stg}	-55~+175	ç	

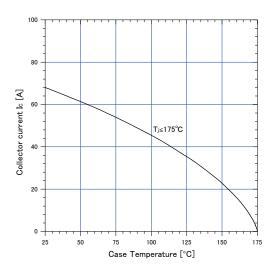
Note *1 : Pulse width limited by Tjmax.

● Electrical characteristics (at T_i= 25°C unless otherwise specified)

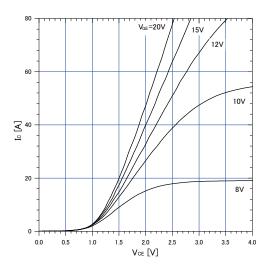
Description	Cumbala	0			Characteristics		
	Symbols	Conditions	Conditions		typ.	max.	Unit
Zero Gate Voltage Collector Current	Ices	V _{CE} = 1200V, V _{GE} = 0V	T _j =25°C	-	-	250	μΑ
Zero Gate voltage Collector Current	ICES	,	T _j =175°C	-	-	2	mA
Gate-Emitter Leakage Current	Iges	$V_{CE} = 0V$, $V_{GE} = \pm 20V$		-	-	200	nA
Gate-Emitter Threshold Voltage	V _{GE (th)}	$V_{CE} = 20V, I_{C} = 40mA$		5.0	6.0	7.0	V
Collector-Emitter Saturation Voltage	V _{CE} (sat)	V _{GE} = 15V. I _C = 40A	T _i =25°C	1.4	2.0	2.6	V
<u> </u>			T _j =175°C	-	2.6	-	٧
Input Capacitance	Cies	V _{CE} =25V		1250	2500	3750	
Output Capacitance	Coes	V _{GE} =0V		55	110	165	pF
Reverse Transfer Capacitance	Cres	f=1MHz		17	34	51	
		$V_{cc} = 400V$					_
Gate Charge	Q _G	Ic = 40A		60	120	180	nC
		V _{GE} = 15V					
Turn-On Delay Time	t _{d(on)}	T _j = 25°C		16	32	48	
Rise Time	t	Vcc = 600V		27	54	81	ns
Turn-Off Delay Time	t _{d(off)}	Ic = 40A		89	178	267	
Fall Time	tr	V _{GE} = 15V		20	40	60	
Turn-On Energy	Eon	$R_G = 10\Omega$		1.4	2.8	4.2	
		L = 500µH			1.6	2.4	mJ
Turn-Off Energy	Eoff	Energy loss include "tail" and	0.8				
		(FDRW20S120J) reverse red	covery.				
Turn-On Delay Time	t _{d(on)}	T _i = 150°C		16	32	48	
Rise Time	t	Vcc = 600V		24	48	72	ns
Turn-Off Delay Time	t _{d(off)}	Ic = 40A	110	220	330	113	
Fall Time	tr	V _{GE} = 15V		28	56	84	
Turn-On Energy	Eon	$R_G = 10\Omega$		2.3	4.6	6.9	
		L = 500µH					mJ
Turn-Off Energy	Eoff	Energy loss include "tail" and		1.2	2.4	3.6	1113
		(FDRW20S120J) reverse red					
Forward Voltage Drop	VF	I _F =20A	T _j =25°C	1.3	2.2	2.8	V
Torward Voltage Brop	VF	I _j =1/5°C		1.0	1.8	2.6	V
		Vcc=30V					
Diode Reverse Recovery Time	t _{rr1}	I _F = 3.0A		21	42	55	ns
		-di/dt=200A/µs					
Diode Reverse Recovery Time	t _{rr2}	Vcc=600V		0.15	0.38	0.61	μs
	UTZ	I⊧=20A		0.13	0.50	0.01	μο
Diode Reverse Recovery Charge	Qrr	-di⊧/dt=200A/µs		0.38	0.95	1.52	μC
Diodo Novelse Necovery Orlange	QII	T _j =25°C		0.55	0.55	1.02	μΟ

FGW40N120WD

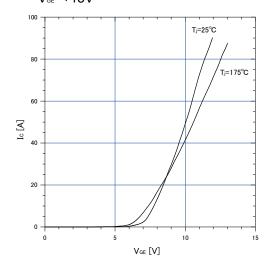
http://www.fujielectric.com/products/semiconductor/

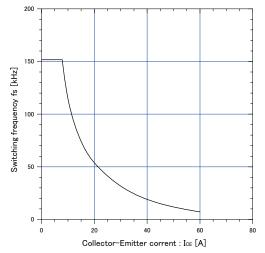

Description	Symbols	Symbols Conditions		Characteristics		
Description	Symbols Conditions	Conditions	min.	typ.	max.	Unit
Diode Reverse Recovery Time	t _{rr2}	Vc=600V I₅=20A	0.26	0.66	1.06	μs
Diode Reverse Recovery Charge	Qrr	-di⊧/dt=200A/μs T.=175°C	1.8	4.5	7.2	μC

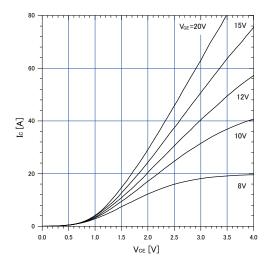
● Thermal resistance


Items	Symbols		Unit		
items		min.	typ.	max.	Oilit
Thermal Resistance, Junction-Ambient	R _{th(j-a)}	-	-	50	
Thermal Resistance, IGBT Junction to Case	R _{th(j-c)_IGBT}	-	-	0.417	°C/W
Thermal Resistance, FWD Junction to Case	R _{th(j-c)_FWD}	-	-	1.191	

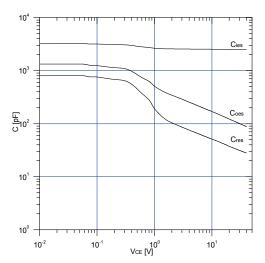
■ Characteristics (Representative)

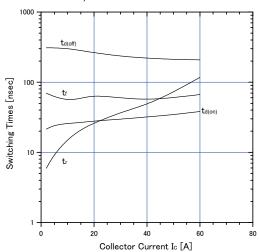

Graph.1 DC Collector Current vs T_c $V_{ce} \ge +15V$, $T_i \le 175$ °C

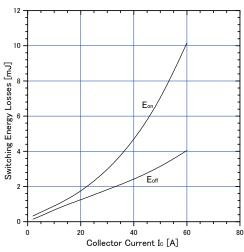

Graph.3 Typical Output Characteristics (V_{ce} - I_c) T_j =25°C

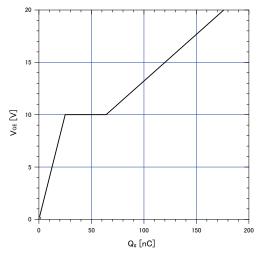

Graph.5
Typical Transfer Characteristics
V_{se}=+15V

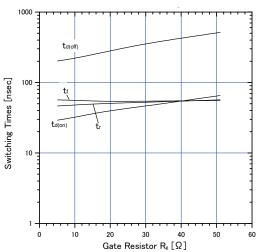
Graph.2 Collector Current vs. switching frequency V_{oe} =+15V, T_{o} ≤175°C, V_{co} =600V, D=0.5, R_{e} =10 Ω , T_{c} =100°C

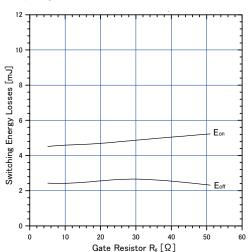

Graph.4 Typical Output Characteristics (V_{ce} - I_c) T_j =175°C

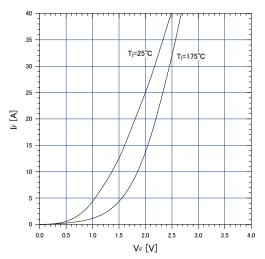

Graph.6 Gate Threshold Voltage vs. T₁ I₀=40mA, V₀=20V

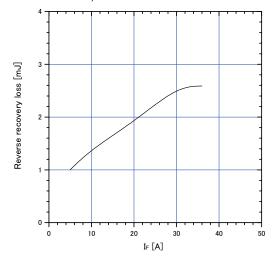

Graph.7 Typical Capacitance V_{□E}=0V, f=1MHz, T_i=25°C


Graph.9 Typical switching time vs. I_c T_j =175°C, V_{cc} =600V, L=500 μ H V_{ce} =15V, R_c =10 Ω

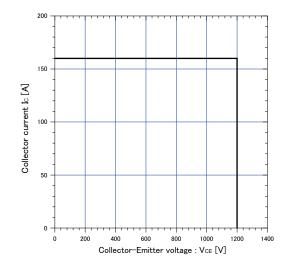

Graph.11 Typical switching losses vs. I_c T_j=175°C, V_{cc} =600V, L=500 μ H V_{ce} =15V, R_c =10 Ω

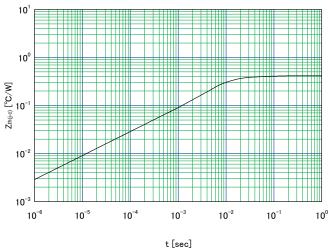

Graph.8 Typical Gate Charge V∞=600V, I₀=40A, T,=25°C

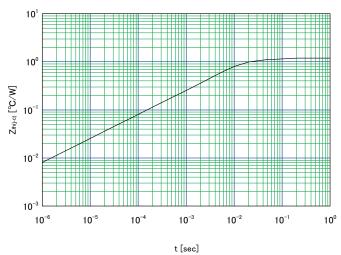

Graph.10 Typical switching time vs. R_s T_s =175°C, V_{cc} =600V, I_c =40A, L=500 μ H V_{se} =15V

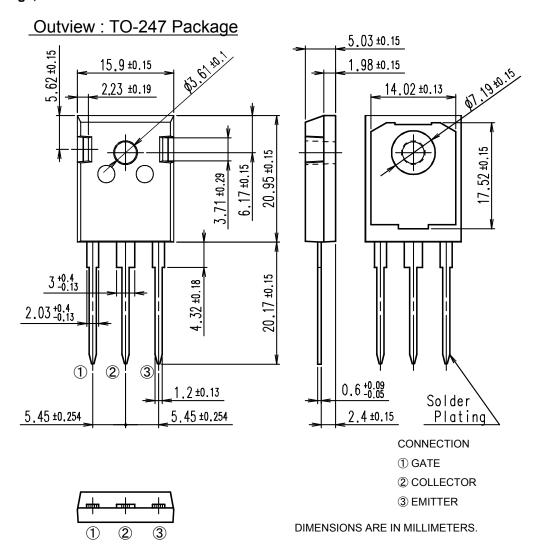

Graph.12
Typical switching losses vs. R_s
T_j=175°C, V_∞=600V, I_c=40A, L=500μH
V_{sε}=15V

Graph.13 FWD Forward voltage drop (V_F-I_F)


Graph.15 Typical reverse recovery loss vs. I_F T_J=175°C,V_{CC}=600V,L=500 μ H V_{GE}=15V,R_G=10 Ω


Graph.14 Typical reverse recovery characteristics vs. I_{F} T_j=175°C, V_{cc}=600V, L=500 μ H, V_{cE}=15V,R_c=10 Ω


Graph.16 Reverse biased Safe Operating Area $T_1 \le 175^{\circ}C$, $V_{oe} = +15V/0V$, $R_o = 10\Omega$


Graph.17
Transient thermal resistance of IGBT

Graph.18
Transient thermal resistance of FWD

■ Outline Drawings, mm

WARNING

- 1. This Catalog contains the product specifications, characteristics, data, materials, and structures as of June 2015. The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Catalog, be sur to obtain the latest specifications.
- 2. All applications described in this Catalog exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted. Fuji Electric Co., Ltd. makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.
- 3. Although Fuji Electric Co., Ltd. is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design failsafe, flame retardant, and free of malfunction.
- 4. The products introduced in this Catalog are intended for use in the following electronic and electrical equipment which has normal reliability requirements.
- Computers
- OA equipment
- Communications equipment (terminal devices)
- · Measurement equipment

- · Machine tools
- Audiovisual equipment
- Electrical home appliances
- Personal equipment Industrial robots etc.
- 5. If you need to use a product in this Catalog for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric Co., Ltd. to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty.
- Transportation equipment (mounted on cars and ships)
- Traffic-signal control equipment

• Submarine repeater equipment

- Emergency equipment for responding to disasters and anti-burglary devices
- · Medical equipment

- Trunk communications equipment
- · Gas leakage detectors with an auto-shut-off feature
- · Safety devices
- 6. Do not use products in this Catalog for the equipment requiring strict reliability such as the following and equivalents to strategic equipment (without limitation).
 - Space equipment

- Aeronautic equipment
- · Nuclear control equipment
- 7. Copyright ©1996-2015 by Fuji Electric Co., Ltd. All rights reserved.
- No part of this Catalog may be reproduced in any form or by any means without the express permission of Fuji Electric Co., Ltd.
- 8. If you have any question about any portion in this Catalog, ask Fuji Electric Co., Ltd. or its sales agents before using the product. Neither Fuji Electric Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.