Preferred Device

Power MOSFET 12 Amps, 100 Volts

P-Channel TO-220

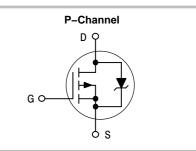
This Power MOSFET is designed for medium voltage, high speed power switching applications such as switching regulators, converters, solenoid and relay drivers.

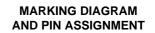
Features

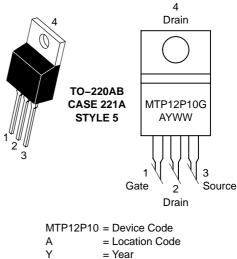
- Silicon Gate for Fast Switching Speeds Switching Times Specified at 100°C
- Designer's Data I_{DSS}, V_{DS(on)}, V_{GS(th)} and SOA Specified at Elevated Temperature
- Rugged SOA is Power Dissipation Limited
- Source-to-Drain Diode Characterized for Use With Inductive Loads
- Pb–Free Package is Available*

MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)

, , , , , , , , , , , , , , , , , , ,						
Rating	Symbol	Value	Unit			
Drain-Source Voltage	V _{DSS}	100	Vdc			
Drain–Gate Voltage (R_{GS} = 1.0 M Ω)	V _{DGR}	100	Vdc			
Gate–Source Voltage – Continuous – Non–repetitive ($t_p \le 50 \ \mu$ s)	V _{GS} V _{GSM}	±20 ±40	Vdc Vpk			
Drain Current – Continuous – Pulsed	I _D I _{DM}	12 28	Adc			
Total Power Dissipation Derate above 25°C	PD	75 0.6	W W/°C			
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to 150	°C			
Thermal Resistance – Junction–to–Case – Junction–to–Ambient	$R_{ heta JC} \ R_{ heta JA}$	1.67 62.5	°C/W			
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	ΤL	260	°C			


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.




ON Semiconductor®

http://onsemi.com

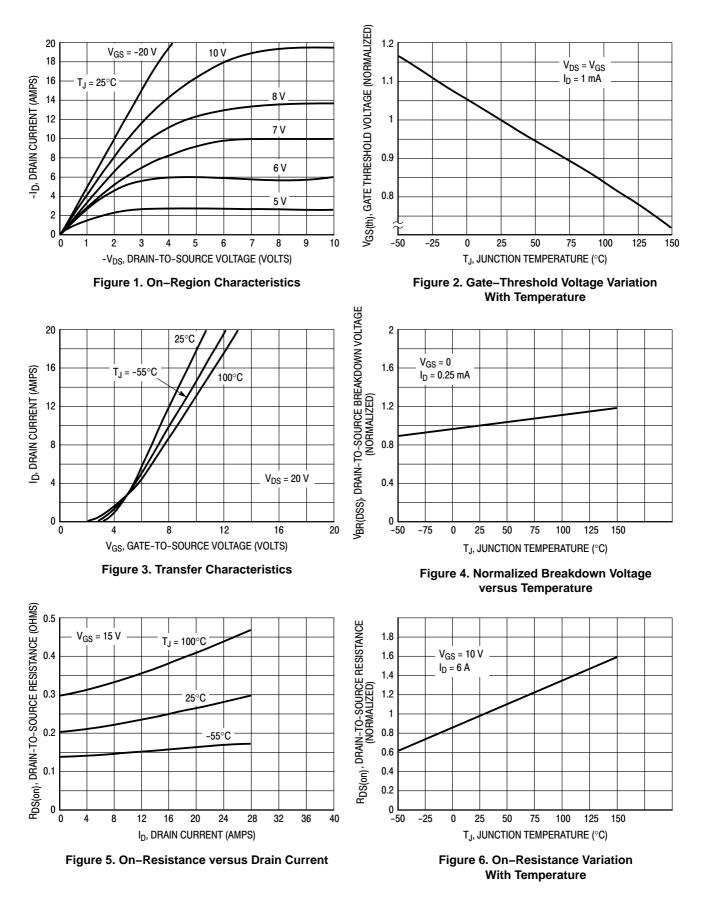
12 AMPERES, 100 VOLTS R_{DS(on)} = 300 mΩ

Y	= Year
WW	= Work Week
G	= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
MTP12P10	TO-220AB	50 Units/Rail
MTP12P10G	TO–220AB (Pb–Free)	50 Units/Rail

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS			.		
Drain-Source Breakdown Voltage (\	V _{(BR)DSS}	100	-	Vdc	
Zero Gate Voltage Drain Current (V_{DS} = Rated V_{DSS} , V_{GS} = 0) (V_{DS} = Rated V_{DSS} , V_{GS} = 0, T_J	I _{DSS}		10 100	μAdc	
Gate-Body Leakage Current, Forwa	rd ($V_{GSF} = 20 \text{ Vdc}, V_{DS} = 0$)	I _{GSSF}	-	100	nAdc
Gate-Body Leakage Current, Rever	se (V _{GSR} = 20 Vdc, V _{DS} = 0)	I _{GSSR}	-	100	nAdc
ON CHARACTERISTICS (Note 1)					
Gate Threshold Voltage ($V_{DS} = V_{GS}$ T _J = 100°C	, I _D = 1.0 mA)	V _{GS(th)}	2.0 1.5	4.5 4.0	Vdc
Static Drain–Source On–Resistance	$(V_{GS} = 10 \text{ Vdc}, I_D = 6.0 \text{ Adc})$	R _{DS(on)}	-	0.3	Ω
$ Drain-Source On-Voltage (V_{GS} = 10 \\ (I_D = 12 \text{ Adc}) \\ (I_D = 6.0 \text{ Adc}, \text{T}_J = 100^\circ\text{C}) $	V _{DS(on)}		4.2 3.8	Vdc	
Forward Transconductance ($V_{DS} = 2$	15 V, I _D = 6.0 A)	9 _{FS}	2.0	_	mhos
DYNAMIC CHARACTERISTICS			· ·		<u> </u>
Input Capacitance		C _{iss}	-	920	pF
Output Capacitance	(V _{DS} = 25 V, V _{GS} = 0, f = 1.0 MHz) See Figure 10	C _{oss}	-	575	
Reverse Transfer Capacitance		C _{rss}	-	200	
SWITCHING CHARACTERISTICS (Note 1) (T _J = 100°C)				
Turn-On Delay Time		t _{d(on)}	-	50	ns
Rise Time	(V _{DD} = 25 V, I _D = 0.5 Rated I _D , R _G = 50 Ω)	t _r	-	150	
Turn-Off Delay Time	See Figures 12 and 13	t _{d(off)}	-	150	
Fall Time		t _f	-	150	
Total Gate Charge		Qg	33 (Typ)	50	nC
Gate-Source Charge	$(V_{DS} = 0.8 \text{ Rated } V_{DSS}, I_D = \text{Rated } I_D, V_{GS} = 10 \text{ V})$ See Figure 11	Q _{gs}	16 (Typ)	-	
Gate-Drain Charge		Q _{gd}	17 (Typ)	-	
SOURCE-DRAIN DIODE CHARAC	TERISTICS (Note 1)				-
Forward On–Voltage		V_{SD}	4.0 (Typ)	5.5	Vdc
Forward Turn-On Time	$(I_{S} = Rated I_{D}, V_{GS} = 0)$	t _{on}	Limited by stray inductance		
Reverse Recovery Time		t _{rr}	300 (Typ)	-	ns
INTERNAL PACKAGE INDUCTANO	CE (TO-204)				
Internal Drain Inductance, (Measure source pin and the center of the die)	L _d	5.0 (Typ)	-	nH	
Internal Source Inductance (Measured from the source pin, 0.25 to the source bond pad)	L _s	12.5 (Тур)	_		
INTERNAL PACKAGE INDUCTANO	CE (TO-220)		,		1
Internal Drain Inductance (Measured from the contact screw o (Measured from the drain lead 0.25"	L _d	3.5 (Typ) 4.5 (Typ)	- -	nH	
Internal Source Inductance (Measured from the source lead 0.29	Ls	7.5 (Тур)	-	1	

1. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2%.

TYPICAL ELECTRICAL CHARACTERISTICS

SAFE OPERATING AREA INFORMATION

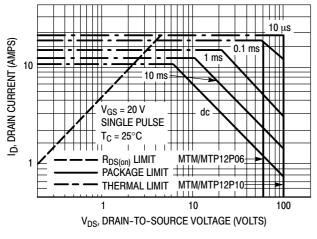
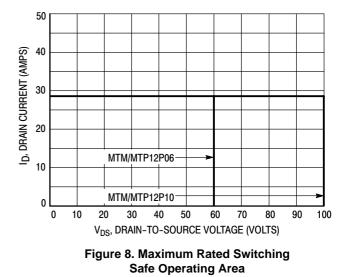



Figure 7. Maximum Rated Forward Biased Safe Operating Area

FORWARD BIASED SAFE OPERATING AREA

The FBSOA curves define the maximum drain-to-source voltage and drain current that a device can safely handle when it is forward biased, or when it is on, or being turned on. Because these curves include the limitations of simultaneous high voltage and high current, up to the rating of the device, they are especially useful to designers of linear systems. The curves are based on a case temperature of 25°C and a maximum junction temperature of 150°C. Limitations for repetitive pulses at various case temperatures can be determined by using the thermal response curves. ON Semiconductor Application Note, AN569, "Transient Thermal Resistance–General Data and Its Use" provides detailed instructions.

SWITCHING SAFE OPERATING AREA

The switching safe operating area (SOA) of Figure 8 is the boundary that the load line may traverse without incurring damage to the MOSFET. The fundamental limits are the peak current, I_{DM} and the breakdown voltage, $V_{(BR)DSS}$. The switching SOA shown in Figure 8 is applicable for both turn–on and turn–off of the devices for switching times less than one microsecond.

The power averaged over a complete switching cycle must be less than:

$$\frac{T_{J(max)} - T_C}{R_{\theta JC}}$$

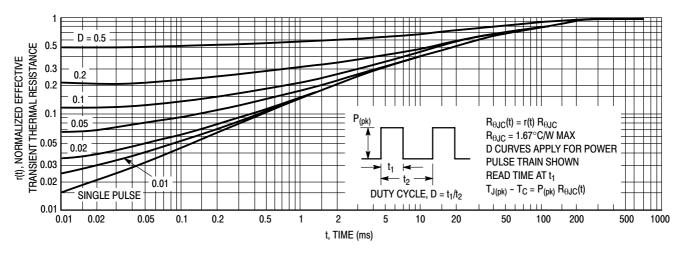
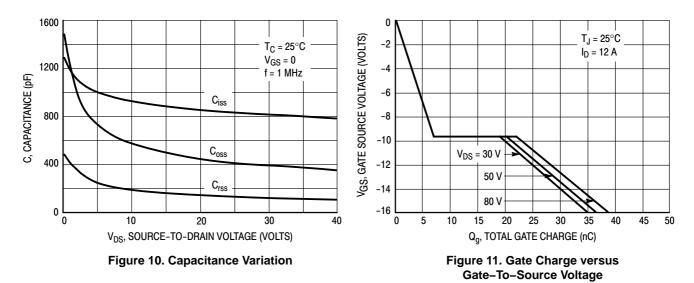
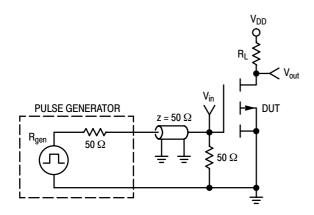




Figure 9. Thermal Response

RESISTIVE SWITCHING

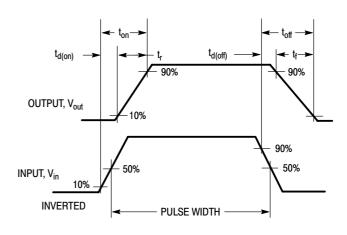
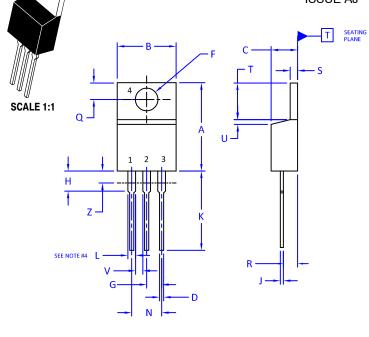



Figure 13. Switching Waveforms

DATE 05 NOV 2019

TO-220 CASE 221A-09 ISSUE AJ

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.

2. CONTROLLING DIMENSION: INCHES

3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INCHES		MILLIME	TERS	
DIM	MIN.	MAX.	MIN.	MAX.	
А	0.570	0.620	14.48	15.75	
В	0.380	0.415	9.66	10.53	
С	0.160	0.190	4.07	4.83	
D	0.025	0.038	0.64	0.96	
F	0.142	0.161	3.60	4.09	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.161	2.80	4.10	
J	0.014	0.024	0.36	0.61	
К	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
Ν	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.41	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050 0.00		1.27	
V	0.045		1.15		
Z		0.080		2.04	

STYLE 1: PIN 1. 2. 3. 4.	COLLECTOR EMITTER	STYLE 2: PIN 1. 2. 3. 4.	EMITTER	3.	CATHODE ANODE GATE ANODE	STYLE 4: PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
STYLE 5: PIN 1. 2. 3. 4.	DRAIN SOURCE	2. 3.	ANODE CATHODE ANODE CATHODE	2. 3.	CATHODE ANODE CATHODE ANODE	STYLE 8: PIN 1. 2. 3. 4.	••••••
STYLE 9: PIN 1. 2. 3. 4.	COLLECTOR EMITTER	STYLE 10: PIN 1. 2. 3. 4.	GATE SOURCE DRAIN	STYLE 11: PIN 1. 2. 3. 4.	DRAIN SOURCE GATE	STYLE 12 PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE NOT CONNECTED

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220		PAGE 1 OF 1		
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights for others.					

 $\ensuremath{\textcircled{}}$ Semiconductor Components Industries, LLC, 2019

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: MTP12P10 MTP12P10G