PS100R THRU PS1010R

FAST SWITCHING PLASTIC DIODES VOLTAGE - 50 to 1000 Volts CURRENT - 1.0 Ampere

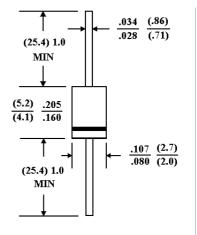
FEATURES

- High current capability
- Plastic package has Underwriters Laboratory
 Flammability Classification 94V-O Utilizing
 Flame Retardant Epoxy Molding Compound
- 1.0 ampere operation at T_A=55 ¢J with no thermal runaway
- Fast switching for high efficiency
- Exceeds environmental standards of MIL-S-19500/228
- Low leakage

MECHANICAL DATA

Case: Molded plastic, DO-41

Terminals: Plated axial leads, solderable per MIL-STD-202,


Method 208

Polarity: Color band denotes cathode

Mounting Position: Any

Weight: 0.012 ounce, 0.3 gram

<u>DO-41</u>

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 [¢]J ambient temperature unless otherwise specified.

Single phase, half wave, 60Hz, resistive or inductive load.

For capacitive load, derate current by 20%.

	PS100R	PS101R	PS102R	PS104R	PS106R	PS108R	PS1010R	UNITS
Maximum Recurrent Peak Reverse Voltage	50	100	200	400	600	800	1000	V
Maximum RMS Voltage	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage	50	100	200	400	600	800	1000	V
Maximum Average Forward Rectified Current .375"(9.5mm) lead length at T _A =55 ¢J	1.0							А
Peak Forward Surge Current 8.3ms single half sine wave superimposed on rated load(JECEC method)	30							Α
Maximum Forward Voltage at 1.0A DC	1.3							V
Maximum Reverse Current T _J =25 ¢J	5.0							£g A
at Rated DC Blocking Voltage T _J =100 ¢J	500							£g A
Typical Junction capacitance (Note 1) CJ	12							₽F
Typical Thermal Resistance (Note 3) R £KJA	41							¢J/W
Maximum Reverse Recovery Time(Note 2)	150	150	150	150	250	500	500	ns
Operating and Storage Temperature Range T_J, T_{STG}	-55 to +150							¢J

NOTES:

- 1. Measured at 1 MHz and applied reverse voltage of 4.0 VDC
- 2. Reverse Recovery Test Conditions: I_F=.5A, I_R=1A, I_{rr}=.25A
- 3. Thermal resistance from junction to ambient and from junction to lead at 0.375"(9.5mm) lead length P.C.B. mounted

RATING AND CHARACTERISTIC CURVES PS100R THRU PS1010R

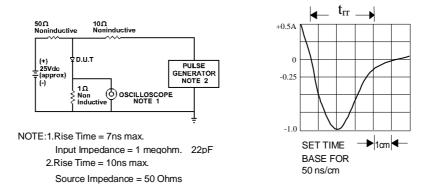


Fig. 1-REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

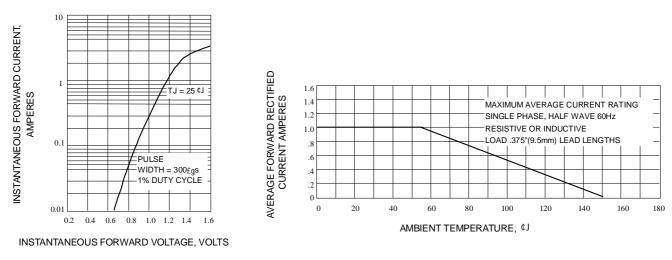


Fig. 2-TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

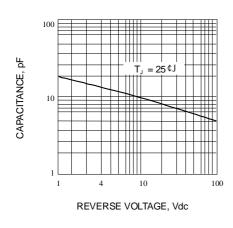


Fig. 4-TYPICAL JUNCTION CAPACITANCE

Fig. 3-FORWARD CURRENT DERATING CURVE

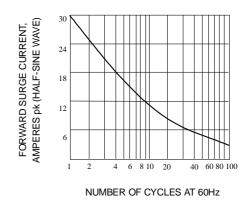


Fig. 5-PEAK FORWARD SURGE CURRENT

