

TDA8754

Triple 8-bit video ADC up to 270 Msample/s Rev. 07 — 3 May 2007

Product data sheet

General description 1.

The TDA8754 is a complete triple 8-bit Analog-to-Digital Converter (ADC) with an integrated Phase-Locked Loop (PLL) running up to 270 Msample/s and analog preprocessing functions (clamp and programmable gain amplifier) optimized for capturing RGB/YUV graphic signals.

The PLL generates a pixel clock from inputs HSYNC and COAST.

The TDA8754 offers full sync processing for Sync-On-Green (SOG) applications. A clamp signal may be generated internally or provided externally.

The clamp levels, gains and other settings are controlled via the I²C-bus interface.

This IC supports display resolutions up to QXGA (2048 × 1536) at 85 Hz.

2. **Features**

- 3.3 V power supply
- Temperature range from -10 °C to +70 °C
- Triple 8-bit ADC:
 - 0.25 LSB Differential Non-Linearity (DNL)
 - 0.6 LSB Integral Non-Linearity (INL)
- Analog sampling rate from 12 Msample/s up to 270 Msample/s
- Maximum data rate:
 - Single port mode: 140 MHz Dual port mode: 270 MHz
 - ◆ 3.3 V LV-TTL outputs
- PLL control via I²C-bus:
 - 390 ps PLL jitter peak to peak at 270 MHz
 - Low PLL drift with temperature (2 phase steps maximum)
 - ◆ PLL generates the ADC sampling clock which can be locked on the line frequency from 15 kHz to 150 kHz
 - Integrated PLL divider
 - Programmable phase clock adjustment cells
- Three clamp circuits for programming a clamp code from –24 to +136 by steps of 1 LSB (mid-scale clamping for YUV signal)
- Internal generation of clamp signal
- Three independent blanking functions
- Input:
 - ◆ 700 MHz analog bandwidth

Triple 8-bit video ADC up to 270 Msample/s

- ◆ Two independent analog inputs selectable via I²C-bus
- ◆ Analog input from 0.5 V to 1 V (p-p) to produce a full-scale ADC input of 1 V (p-p)
- ◆ Three controllable amplifiers: gain control via I²C-bus to produce full-scale peak-to-peak output with a half LSB resolution
- Synchronization:
 - Frame and field detection for interlaced video signal
 - ◆ Parasite synchronization pulse detection and suppression
 - ◆ Sync processing for composite sync, 3-level sync and sync-on-green signals
 - Polarity and activity detection
- IC control via I²C-bus serial interface
- Power-down mode
- LQFP144 and LBGA208 package:
 - ◆ LBGA208 package pin-to-pin compatible with TDA8756

3. Applications

- LCD panels drive
- RGB/YUV high-speed digitizing
- LCD projection system
- New TV concept

4. Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CCA}	analog supply voltage		3.0	3.3	3.6	V
V_{CCD}	digital supply voltage		3.0	3.3	3.6	V
V_{CCO}	output supply voltage		3.0	3.3	3.6	V
f_{PLL}	output clock frequency		10	-	270	MHz
ENOB	effective number of bits	$f_{clk} = 270 \text{ MHz};$ $f_i = 10 \text{ MHz}$	-	7.6	-	bit
INL	integral non-linearity	$f_{clk} = 270 \text{ MHz};$ $f_i = 10 \text{ MHz}$	-	±0.6	±1.3	bit
DNL	differential non-linearity	$f_{clk} = 270 \text{ MHz};$ $f_i = 10 \text{ MHz}$	-	±0.25	±0.6	bit
P _{tot}	total power dissipation		-	1.0	1.3	W

TDA8754_7 © NXP B.V. 2007. All rights reserved.

Triple 8-bit video ADC up to 270 Msample/s

3 of 57

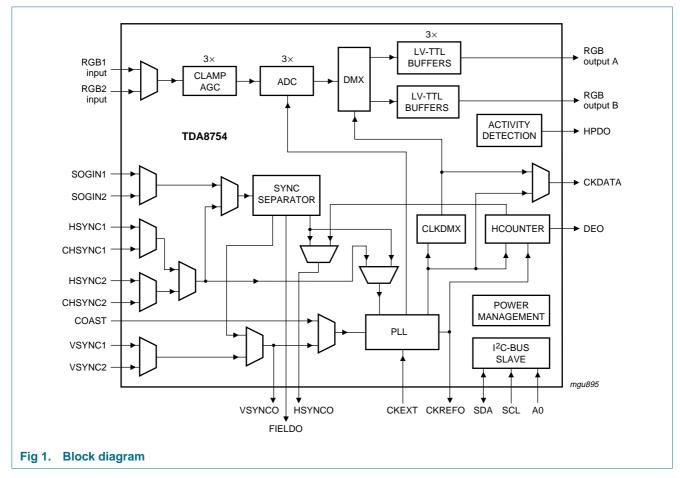
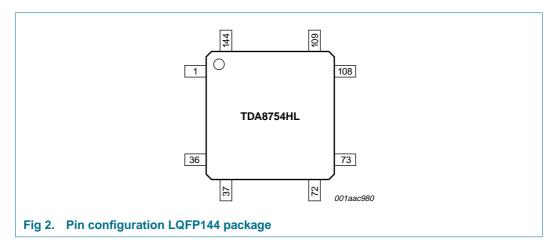

Ordering information 5.

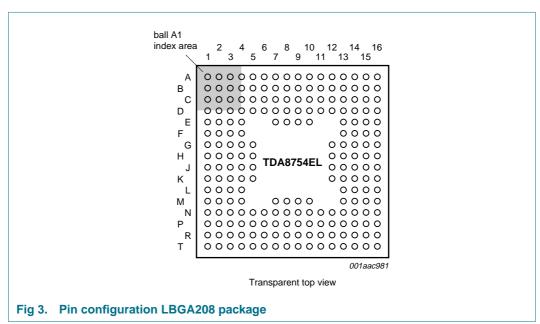
Table 2. **Ordering information**

Type number	Maximum sampling frequency	Package			
		Name	Description	Version	
TDA8754HL/11/C1	110 MHz	LQFP144	plastic low profile quad flat package; 144 leads; body $20 \times 20 \times 1.4 \text{ mm}$	SOT486-1	
TDA8754HL/14/C1	140 MHz				
TDA8754HL/17/C1	170 MHz				
TDA8754HL/21/C1	210 MHz				
TDA8754HL/27/C1	270 MHz				
TDA8754EL/11/C1	110 MHz	LBGA208[1]	plastic low profile ball grid array package; 208 balls; body $17 \times 17 \times 1.05 \text{ mm}$	SOT774-1	
TDA8754EL/14/C1	140 MHz				
TDA8754EL/17/C1	170 MHz				
TDA8754EL/21/C1	210 MHz				
TDA8754EL/27/C1	270 MHz				

^[1] Values are not yet guaranteed.

Block diagram 6.




TDA8754 7 © NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

Pinning information

7.1 Pinning

7.2 Pin description

Pin description for LQFP144 package Table 3.

Symbol	Pin	Description
GNDD(TTL)	1	TTL input digital ground
V _{CCD(TTL)}	2	TTL input digital supply voltage
HSYNC2	3	horizontal synchronization pulse input 2
CHSYNC2	4	composite horizontal synchronization pulse input 2
V _{CCA(PLL)}	5	PLL analog supply voltage
HSYNC1	6	horizontal synchronization pulse input 1
CHSYNC1	7	composite horizontal synchronization pulse input 1

4 of 57

© NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

5 of 57

Pin description for LQFP144 package ...continued Table 3.

Symbol	Pin	Description
GNDA(PLL)	8	PLL analog ground
CZ	9	PLL filter input
GNDA(CPO)	10	CPO analog ground
СР	11	PLL filter input
PMO	12	phase measurement output (test)
GNDA(SUB)	13	SUB analog ground
CAPSOGIN1	14	decoupling SOG input 1
CAPSOGO	15	decoupling SOG output
CAPSOGIN2	16	decoupling SOG input 2
GNDA(SOG)	17	SOG analog ground
SOGIN1	18	sync-on-green input 1
V _{CCA(SOG)}	19	SOG analog supply voltage
SOGIN2	20	sync-on-green input 2
V _{CCA(R)}	21	red channel analog supply voltage
RIN1	22	red channel analog input 1
GNDA(R1)	23	red channel 1 analog ground
RIN2	24	red channel analog input 2
GNDA(R2)	25	red channel 2 analog ground
DEC	26	main regulator decoupling input
RBOT	27	red channel ladder decoupling input
RCLPC	28	red channel clamp capacitor input
V _{CCA(G)}	29	green channel analog supply voltage
GIN1	30	green channel analog input 1
GNDA(G1)	31	green channel 1 analog ground
GIN2	32	green channel analog input 2
GNDA(G2)	33	green channel 2 analog ground
GBOT	34	green channel ladder decoupling input
GCLPC	35	green channel clamp capacitor input
V _{CCA(B)}	36	blue channel analog supply voltage
BIN1	37	blue channel analog input 1
GNDA(B1)	38	blue channel 1 analog ground
BIN2	39	blue channel analog input 2
GNDA(B2)	40	blue channel 2 analog ground
BBOT	41	blue channel ladder decoupling input
BCLPC	42	blue channel clamp capacitor input
AGCO	43	Automatic Gain Control (AGC) output
GNDD(ADC)	44	ADC digital ground
V _{CCD(ADC)}	45	ADC digital supply voltage
GNDD(SUB)	46	SUB digital ground
PWD	47	power-down control input
TEST	48	test input; must be connected to ground

TDA8754_7 © NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

6 of 57

Pin description for LQFP144 package ...continued Table 3.

Symbol	Din	Description
Symbol	Pin 40	Description
BB0	49	blue channel ADC output B bit 0
BB1	50	blue channel ADC output B bit 1
BB2	51	blue channel ADC output B bit 2
BB3	52	blue channel ADC output B bit 3
BB4	53	blue channel ADC output B bit 4
BB5	54	blue channel ADC output B bit 5
BB6	55	blue channel ADC output B bit 6
BB7	56	blue channel ADC output B bit 7
$V_{CCO(BB)}$	57	blue channel B output supply voltage
GNDO(BB)	58	blue channel B output ground
BOR	59	blue channel ADC output bit out of range
BA0	60	blue channel ADC output A bit 0
BA1	61	blue channel ADC output A bit 1
BA2	62	blue channel ADC output A bit 2
BA3	63	blue channel ADC output A bit 3
BA4	64	blue channel ADC output A bit 4
BA5	65	blue channel ADC output A bit 5
BA6	66	blue channel ADC output A bit 6
BA7	67	blue channel ADC output A bit 7
V _{CCO(BA)}	68	blue channel A output supply voltage
GNDO(BA)	69	blue channel A output ground
GB0	70	green channel ADC output B bit 0
GB1	71	green channel ADC output B bit 1
GB2	72	green channel ADC output B bit 2
GB3	73	green channel ADC output B bit 3
GB4	74	green channel ADC output B bit 4
GB5	75	green channel ADC output B bit 5
GB6	76	green channel ADC output B bit 6
GB7	77	green channel ADC output B bit 7
V _{CCO(GB)}	78	green channel B output supply voltage
GNDO(GB)	79	green channel B output ground
GOR	80	green channel ADC output bit out of range
GA0	81	green channel ADC output A bit 0
GA1	82	green channel ADC output A bit 1
GA2	83	green channel ADC output A bit 2
GA3	84	green channel ADC output A bit 3
GA4	85	green channel ADC output A bit 4
GA5	86	green channel ADC output A bit 5
GA6	87	green channel ADC output A bit 6
GA7	88	green channel ADC output A bit 7
	89	green channel A output x bit /
$V_{CCO(GA)}$	ບອ	green mainer A output supply voltage

TDA8754_7 © NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

7 of 57

Pin description for LQFP144 package ...continued Table 3.

Symbol	Pin	Description
GNDO(GA)	90	green channel A output ground
RB0	91	red channel ADC output B bit 0
RB1	92	red channel ADC output B bit 1
RB2	93	red channel ADC output B bit 2
RB3	94	red channel ADC output B bit 3
RB4	95	red channel ADC output B bit 4
RB5	96	red channel ADC output B bit 5
RB6	97	red channel ADC output B bit 6
RB7	98	red channel ADC output B bit 7
$V_{CCO(RB)}$	99	red channel B output supply voltage
GNDO(RB)	100	red channel B output ground
ROR	101	red channel ADC output bit out of range
RA0	102	red channel ADC output A bit 0
RA1	103	red channel ADC output A bit 1
RA2	104	red channel ADC output A bit 2
RA3	105	red channel ADC output A bit 3
RA4	106	red channel ADC output A bit 4
RA5	107	red channel ADC output A bit 5
RA6	108	red channel ADC output A bit 6
RA7	109	red channel ADC output A bit 7
V _{CCO(RA)}	110	red channel A output supply voltage
GNDO(RA)	111	red channel A output ground
V _{CCO(CLK)}	112	clock output digital supply voltage
CKDATA	113	data clock output
GNDO(CLK)	114	clock output digital ground
GNDD(I2C)	115	I ² C-bus lines digital ground
V _{CCD(I2C)}	116	I ² C-bus lines digital supply voltage
A0	117	I ² C-bus address control input
SDA	118	I ² C-bus serial data input and output
SCL	119	I ² C-bus serial clock input
DIS	120	I ² C-bus disable control input
TDO	121	scan test output
TCK	122	scan test mode input; must be connected to ground
CLP	123	clamp pulse input
STBDVI	124	DVI standby output
GNDD(MCF)	125	MCF digital ground
V _{CCD(MCF)}	126	MCF digital supply voltage
HSYNCO	127	horizontal synchronization pulse output
DEO	128	data enable output
HPDO	129	hot plug detector output
GNDO(TTL)	130	TTL output digital ground

TDA8754_7 © NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

Table 3. Pin description for LQFP144 package ...continued

	-	
Symbol	Pin	Description
$V_{CCO(TTL)}$	131	TTL output digital supply voltage
VSYNCO	132	vertical synchronization pulse output
FIELDO	133	field information output
CLPO	134	clamp output
CKREFO	135	reference output clock; re-synchronized horizontal negative pulse
CSYNCO	136	composite synchronization output
ACRX2	137	test pin; should be connected to ground
ACRX1	138	test pin; should be connected to ground
GNDD(SLC)	139	SLC digital ground
V _{CCD(SLC)}	140	SLC output digital supply voltage
CKEXT	141	external clock input
COAST	142	PLL coast control input
VSYNC2	143	vertical synchronization pulse input 2
VSYNC1	144	vertical synchronization pulse input 1

Table 4. Pin description for LBGA208 package

Symbol	Ball	Description
SOGIN1	A1	sync-on-green input 1
GNDA(PLL)	A2	PLL analog ground
SOGIN2	A3	sync-on-green input 2
GNDA(PLL)	A4	PLL analog ground
HSYNC2	A5	horizontal synchronization pulse input 2
CHSYNC2	A6	composite horizontal synchronization pulse input 2
COAST	A7	PLL coast control input
CSYNCO	A8	composite synchronization output
FIELDO	A9	field information output
HSYNCO	A10	horizontal synchronization pulse output
SCL	A11	I ² C-bus serial clock input
n.c.	A12	not connected
n.c.	A13	not connected
DIS	A14	I ² C-bus disable control input
A0	A15	I ² C-bus address control input
CKDATA	A16	data clock output
GNDA(PLL)	B1	PLL analog ground
PMO	B2	phase measurement output (test)
GNDA(PLL)	B3	PLL analog ground
GNDA(PLL)	B4	PLL analog ground
V _{CCA(PLL)}	B5	PLL analog supply voltage
CLP	B6	clamp pulse input
CKEXT	B7	external clock input
CKREFO	B8	reference output clock; re-synchronized horizontal negative pulse

8 of 57

© NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

Table 4. Pin description for LBGA208 package ...continued

Symbol	Ball	Description
VSYNCO	В9	vertical synchronization pulse output
DEO	B10	data enable output
SDA	B11	I ² C-bus serial data input and output
n.c.	B12	not connected
n.c.	B13	not connected
n.c.	B14	not connected
GNDO(CLK)	B15	clock output digital ground
V _{CCO(CLK)}	B16	clock output digital supply voltage
RIN1	C1	red channel analog input 1
GNDA	C2	analog ground
CAPSOGIN1	C3	decoupling SOG input 1
CAPSOGIN2	C4	decoupling SOG input 2
CAPSOGO	C5	decoupling SOG output
HSYNC1	C6	horizontal synchronization pulse input 1
VSYNC1	C7	vertical synchronization pulse input 1
CLPO	C8	clamp output
n.c.	C9	not connected
n.c.	C10	not connected
TCK	C11	scan test mode input
TDO	C12	scan test output
V _{CCD(I2C)}	C13	I ² C-bus lines digital supply voltage
n.c.	C14	not connected
n.c.	C15	not connected
n.c.	C16	not connected
GNDA	D1	analog ground
GNDA	D2	analog ground
CZ	D3	PLL filter input
СР	D4	PLL filter input
GNDA(CPO)	D5	CPO analog ground
CHSYNC1	D6	composite horizontal synchronization pulse input 1
VSYNC2	D7	vertical synchronization pulse input 2
HPDO	D8	hot plug detector output
n.c.	D9	not connected
n.c.	D10	not connected
V _{CCO(TTL)}	D11	TTL output digital supply voltage
GNDO(TTL)	D12	TTL output digital ground
GNDD(I2C)	D13	I ² C-bus lines digital ground
n.c.	D14	not connected
n.c.	D15	not connected
n.c.	D16	not connected
RIN2	E1	red channel analog input 2

TDA8754_7 © NXP B.V. 2007. All rights reserved.

Triple 8-bit video ADC up to 270 Msample/s

10 of 57

Pin description for LBGA208 package ...continued Table 4.

Symbol	Ball	Description
GNDA	E2	analog ground
GNDA	E3	analog ground
GNDA	E4	analog ground
GNDD(TTL)	E7	TTL input digital ground
V _{CCD(TTL)}	E8	TTL input digital supply voltage
GNDD(SLC)	E9	SLC digital ground
V _{CCD(SLC)}	E10	SLC output digital supply voltage
n.c.	E13	not connected
n.c.	E14	not connected
n.c.	E15	not connected
n.c.	E16	not connected
GNDA	F1	analog ground
GNDA	F2	analog ground
RBOT	F3	red channel ladder decoupling input
GNDA	F4	analog ground
n.c.	F13	not connected
n.c.	F14	not connected
n.c.	F15	not connected
n.c.	F16	not connected
GIN1	G1	green channel analog input 1
GNDA	G2	analog ground
DEC	G3	main regulator decoupling input
V_{CCA}	G4	analog supply voltage
V_{CCA}	G5	analog supply voltage
n.c.	G12	not connected
n.c.	G13	not connected
n.c.	G14	not connected
n.c.	G15	not connected
n.c.	G16	not connected
GNDA	H1	analog ground
GNDA	H2	analog ground
GNDA	H3	analog ground
RCLPC	H4	red channel clamp capacitor input
V_{CCA}	H5	analog supply voltage
n.c.	H12	not connected
n.c.	H13	not connected
n.c.	H14	not connected
n.c.	H15	not connected
n.c.	H16	not connected
GIN2	J1	green channel analog input 2
GNDA	J2	analog ground

© NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

11 of 57

Table 4. Pin description for LBGA208 package ...continued

Symbol	Ball	Description
GBOT	J3	green channel ladder decoupling input
GNDA	J4	analog ground
GCLPC	J5	green channel clamp capacitor input
n.c.	J12	not connected
n.c.	J13	not connected
n.c.	J14	not connected
n.c.	J15	not connected
n.c.	J16	not connected
GNDA	K1	analog ground
GNDA	K2	analog ground
GNDA	K3	analog ground
BCLPC	K4	blue channel clamp capacitor input
V_{CCA}	K5	analog supply voltage
n.c.	K12	not connected
n.c.	K13	not connected
n.c.	K14	not connected
n.c.	K15	not connected
n.c.	K16	not connected
BIN1	L1	blue channel analog input 1
GNDA	L2	analog ground
BBOT	L3	blue channel ladder decoupling input
V_{CCA}	L4	analog supply voltage
n.c.	L13	not connected
n.c.	L14	not connected
n.c.	L15	not connected
n.c.	L16	not connected
GNDA	M1	analog ground
GNDA	M2	analog ground
AGCO	M3	AGC output
TEST	M4	test input
V_{CCO}	M7	data output digital supply voltage
V_{CCO}	M8	data output digital supply voltage
GNDO	M9	data output digital ground
GNDO	M10	data output digital ground
n.c.	M13	not connected
n.c.	M14	not connected
n.c.	M15	not connected
n.c.	M16	not connected
BIN2	N1	blue channel analog input 2
GNDA	N2	analog ground
GNDD(ADC)	N3	ADC digital ground

TDA8754_7 © NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

12 of 57

Table 4. Pin description for LBGA208 package ...continued

Symbol	Ball	Description
GNDD(ADC)	N4	ADC digital ground
BA2	N5	blue channel ADC output A bit 2
V_{CCO}	N6	data output digital supply voltage
GB4	N7	green channel ADC output B bit 4
GB0	N8	green channel ADC output B bit 0
GA4	N9	green channel ADC output A bit 4
GA0	N10	green channel ADC output A bit 0
GNDO	N11	data output digital ground
PWD	N12	power-down control input
n.c.	N13	not connected
n.c.	N14	not connected
n.c.	N15	not connected
n.c.	N16	not connected
V _{CCD(ADC)}	P1	ADC digital supply voltage
V _{CCD(ADC)}	P2	ADC digital supply voltage
BB1	P3	blue channel ADC output B bit 1
BA6	P4	blue channel ADC output A bit 6
BA3	P5	blue channel ADC output A bit 3
BOR	P6	blue channel ADC output bit out of range
GB5	P7	green channel ADC output B bit 5
GB1	P8	green channel ADC output B bit 1
GA5	P9	green channel ADC output A bit 5
GA1	P10	green channel ADC output A bit 1
RB6	P11	red channel ADC output B bit 6
RB3	P12	red channel ADC output B bit 3
RB0	P13	red channel ADC output B bit 0
RA5	P14	red channel ADC output A bit 5
RA2	P15	red channel ADC output A bit 2
ROR	P16	red channel ADC output bit out of range
BB6	R1	blue channel ADC output B bit 6
BB4	R2	blue channel ADC output B bit 4
BB2	R3	blue channel ADC output B bit 2
BA7	R4	blue channel ADC output A bit 7
BA4	R5	blue channel ADC output A bit 4
BA0	R6	blue channel ADC output A bit 0
GB6	R7	green channel ADC output B bit 6
GB2	R8	green channel ADC output B bit 2
GA6	R9	green channel ADC output A bit 6
GA2	R10	green channel ADC output A bit 2
RB7	R11	red channel ADC output B bit 7
RB4	R12	red channel ADC output B bit 4

TDA8754_7 © NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

Table 4.	Pin description f	for LBGA208 packagecontinued
Symbol	Ball	Description
RB1	R13	red channel ADC output B bit 1
RA6	R14	red channel ADC output A bit 6
RA3	R15	red channel ADC output A bit 3
RA0	R16	red channel ADC output A bit 0
BB7	T1	blue channel ADC output B bit 7
BB5	T2	blue channel ADC output B bit 5
BB3	Т3	blue channel ADC output B bit 3
BB0	T4	blue channel ADC output B bit 0
BA5	T5	blue channel ADC output A bit 5
BA1	T6	blue channel ADC output A bit 1
GB7	T7	green channel ADC output B bit 7
GB3	T8	green channel ADC output B bit 3
GA7	Т9	green channel ADC output A bit 7
GA3	T10	green channel ADC output A bit 3
GOR	T11	green channel ADC output bit out of range
RB5	T12	red channel ADC output B bit 5
RB2	T13	red channel ADC output B bit 2
RA7	T14	red channel ADC output A bit 7
RA4	T15	red channel ADC output A bit 4
RA1	T16	red channel ADC output A bit 1

Functional description 8.

8.1 Functional description

This triple high-speed 8-bit ADC is designed to convert RGB/YUV signals coming from an analog source into digital data used by a LCD driver (pixel clock up to 270 MHz with analog source) or projections systems.

8.1.1 Power management

It is possible to put the TDA8754 in Standby mode by setting bit STBY = 1 or to put the whole device in Power-down mode by setting pin PWD to HIGH level.

8.1.1.1 Standby mode

In Standby mode, the status of the blocks is as follows:

- Activity detection, I²C-bus slave, sync separator and SOG are still active
- · Pixel counter, ADCs, demultiplexers, AGC and clamp cells are inactive
- Output buffers to the RGB block (RGB 0 to 7, CKDATA, DEO, HSYNCO and VSYNCO) are in high-impedance state
- · Output HPDO is still active
- Output buffers (ROR, BOR, GOR, CKREFO, CSYNCO, CLPO and FIELDO) are in a LOW-level state.

13 of 57

TDA8754 7 © NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

8.1.1.2 Power-down mode

In Power-down mode the status of the blocks is as follows:

- All digital inputs and outputs are in high-impedance state
- All blocks are inactive (I²C-bus, activity detection, ADCs, etc.)
- Analog output is left uncontrolled
- I²C-bus is left in high-impedance state.

8.2 Analog video input

The RGB/YUV video inputs are externally AC coupled and are internally DC polarized. The synchronization signals are also used by the device as input for the internal PLL and the automatic clamp.

8.2.1 Analog multiplexers

The TDA8754 has two analog inputs (RGB input 1 and RGB input 2) selectable via the I^2C -bus.

The sync management can be achieved in several ways:

- Choice between two analog inputs HSYNC and two analog inputs VSYNC
- · Choice between two analog inputs CHSYNC
- Choice between two analog inputs SOG.

8.2.2 Activity detection

When a signal is connected or disconnected on pins HSYNC1(2), CHSYNC1(2), VSYNC1(2) and SOG1(2), then bit HPDO is set to logic 1 and pin HPDO is set to HIGH to advise the user of a change. Bit HPDO is set to logic 0 and pin HPDO is set to LOW when register ACTIVITY2 has been read.

When the synchronization pulse on pin SOG is 3-level, the system will automatically be able to detect that a 3-level sync is present and will force bit 3LEVEL to logic 1. It is possible to disable this function with bit FTRILEVEL.

When an interlaced signal is detected, bit ACFIELD is set to logic 1. When the signal detected is progressive, this bit is set to logic 0. Any change in this bit results into setting bit HPDO = 1 and pin HPDO = HIGH.

A field detection unit is available on pin FIELDO which output is given by the sync separator. The field identity is given by pin FIELDO. This pin gives the field of interlaced signal input.

An automatic polarity detection is also available on pins HSYNC1(2), VSYNC1(2) and CHSYNC1(2). The output on pin HPDO is not affected by the change of polarity of these inputs.

8.2.3 ADC

The three ADCs are designed to convert R, G and B (or Y, U and V) signals at a maximum frequency of 270 Msample/s. The ADC input range is 1 V (p-p) full-scale and the pipeline delay is 2 ADC clock cycles from the input sampling to the data output.

Triple 8-bit video ADC up to 270 Msample/s

The reference ladders regulators are integrated.

8.2.4 Clamp

Three independent parallel clamping circuits are used to clamp the video input signals on programmable black levels. The clamp levels may be set from –24 to +136 LSBs in steps of 1 LSB. They are controlled by three 9-bit I²C-bus registers (OFFSETR, OFFSETG and OFFSETB).

The clamp pulse can be generated internally (based on the PLL clock reference) or can be externally applied on pin CLP.

Remark: To prevent clamp noise when using internal clamp generated by the pixel counter (bit CLPSEL2 = 0), it is advised to delay the clamp pulse by 16 pixels using the HSYNCL register.

By setting correctly the I²C-bus bits, it is possible to inhibit the clamp request with the Vsync signal. This inhibition will be effected by forcing logic 0 on the clamp request output. It should be noted that the clamp period can start on the falling edge of the clamp request and that the high level of the clamp request sets the ADC outputs in the blanking mode. This means that by forcing the clamp signal request to logic 0 by using Vsync, a falling edge may happen on the clamp request if this signal was at logic 1 before enforcing the inhibition. To avoid this, the user has to guarantee that the Vsync signal used for the clamp inhibition will not be set during a high level of the clamp request signal.

Remark: If signal Vsync is coming from the external pin VSYNC, this signal may be used to coast the PLL. In order to properly do the coast, the edge of signal Vsync (COAST) must not appear at the same time as the edge of signal Hsync. This condition is similar to the pin CLP inhibition condition.

8.2.5 AGC

Three independent variable gain amplifiers are used to provide, for each channel, a full-scale input signal to the 8-bit ADC. The gain adjustment range is designed in such a way that for an input range varying from 0.5 to 1 V (p-p), the output signal corresponds to the ADC full-scale input of 1 V (p-p).

8.3 HSOSEL, DEO and SCHCKREFO

Bit HSOSEL allows to have a full correlation phase behavior between outputs CKDATA and HSYNCO when bit HSOSEL = 0 (Hsync from counter). If HSOSEL = 0 and bits PA4 to PA0 of register PHASE are changed to chose the best sampling time, the phase relationship between outputs CKDATA and HSYNCO will stay unchanged. After the video standard is determined, bit HSOSEL must be set to a logic 0 for normal operation mode.

To use the Hsync from the counter the registers HSYNCL, HBACKL, HDISPLMSB and HDISPLLSB should be set properly in order to create the correct HSYNCO and DEO output signals (see <u>Figure 5</u> and <u>Figure 6</u>), which is depending on video standard. Output signal DEO should be used to determine the first active pixel.

The demultiplexed mode should be used (bit DMXRGB = 1) and the output flow is alternated between port A and port B in case the sampling frequency is over 140 Msample/s (clock frequency). It is necessary, in order to warrant that the outputs HSYNCO and DEO are always changing on CKDATA output rising edge (see Figure 7).

Triple 8-bit video ADC up to 270 Msample/s

that the values HSYNCL, HBACKL and HDISPL (see Figure 5) are even value. If an odd value is entered the outputs HSYNCO and DEO can change state during falling edge, which is not compliant with the $t_{h(o)}$ and $t_{d(o)}$ specified output timing.

Bit SCHCKREFO is used if in demultiplexed mode one pixel shift is needed in the DEO signal (to move the screen one vertical line). By setting bit SCHCKREFO from a logic 0 to a logic 1 a left move is obtained, also the timing relationship between HSYNCO, DEO and CKDATA stays unchanged. An even number of pixel moves is done by changing the value of HBACKL and HSYNCL. The correct combination of bits HBACKL, HSYNCL and SCHCKREFO places the first active pixel at the beginning of the screen with always the correct phase relationship between outputs DEO, HSYNCO and CKDATA.

Bit HSOSEL should be set to a logic 0 only after the PLL is stable, so only after the video standard has been found and correct PLL parameters have been set in the TDA8754. Bit HSOSEL should be set to a logic 1 to have a stable HSYNCO signal during the video recognition. The video standard can be recognized by using the signals FIELDO, VSYNCO and HSYNCO. The phase relation between CKDATA and HSYNCO (or DEO) is undefined if bit HSOSEL = 1.

8.4 PLL

The ADCs are clocked by either the internal PLL locked to the reference clock (Hsync from input or Hsync from sync separator) or to an external clock connected to pin CKEXT. This selection is performed via the I²C-bus by setting bit CKEXT. To use the external clock, bit CKEXT must be reset to logic 1.

The PLL phase frequency detector can be disconnected during the frame flyback (vertical blanking) or the unavailability of the Ckref signal by using the coast function. The coast signal can be derived from the VSYNC1(2) input, from the Vsync extracted by the sync separator or from the coast input. The coast function can be disabled with bit COE.

The coast signal may be active either HIGH or LOW by setting bit COS.

It is possible to control the phase of the ADC clock via the I²C-bus with the included digital phase-shift controller. The phase register (5 bits) enables to shift the phase by steps of 11.25 deg.

The PLL also provides a CKDATA clock. This clock is synchronized with the data outputs whatever the output mode is.

It is possible to delay the CKDATA clock with a constant delay (t = 2 ns compared to the outputs) by setting bit DLYCLKRGB = 1. Moreover, it is possible to invert this output by setting bit CKDATINV = 1.

When the PLL reference signal comes from the separator, the PLL rising edge must be preferably used in order to not use the PLL coast mode. It should be noted that the HSYNCO output of the sync separator is always a mostly LOW signal, whatever is the polarity of the composite sync input. The VSYNCO output signal of the sync separator is also mostly LOW signal. It is at a high state during the vertical blanking.

8.5 Sync-on-green

When the SOG input is selected (bit SOGSEL = 1), the SOG charge pump current bits SOGI[1:0] should be programmed in function of the input signal; see Table 5.

16 of 57

TDA8754 7 © NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

A hum remover is implemented in the SOG. It removes completely the hum perturbation on the first or second edge of the horizontal sync pulse for digital video input like VESA, and on the second edge only for analog video input signal like TV or HDTV.

The maximum hum perturbation is 250 mV (p-p) at 60 Hz to have a correct SOG functionality.

Table 5. Charge pump current programming[1]

BITS SOGI[1:0]	Maximum value		Standard
	Δ Tvideo / Δ Tline	∆Tsync / ∆Tline	
00	83.5 %	14.8 %	TV standards and non-VESA standards
01	86.0 %	12.6 %	all TV, HDTV and VESA standards
10	90.5 %	8.6 %	HDTV standards or non-VESA standards
11	test mode		

[1] Definitions:

 Δ **Tvideo** — Total time in 2 frames when video signal is strictly superior to black level.

△**Tline** — Total time of 2 frames.

 Δ **Tsync** — Total time in 2 frames when the video signal is strictly inferior to black level.

8.6 Programmable coast

When the values of PRECOAST[2:0] = 0 and POSTCOAST[4:0] = 0, the coast pulse equals the Vsync input.

When an interlaced signal is used, the regenerated coast pulse width may vary from one frame to another of one Hsync pulse. In that case, the programmed value of PRECOAST[2:0] needs to be increased by one compared to the expected minimum number of Hsync coast pulses before the vertical sync signal.

8.7 Data enable

This signal qualifies the active data period on the horizontal line. Pin DEO = HIGH during the active display time and LOW during the blank time. The start of this signal can be adjusted with bits HSYNCL[9:0] and HBACKL[9:0]. The length of this signal can be adjusted with bits HDISPL[11:0].

8.8 Sync separator

The sync separator is compatible with TV, HDTV and VESA standards.

If the green video signal has composite sync on it (sync-on-green), the SOG function allows to separate the Chsync and the active video part. The Chsync signal coming from this SOG function is accessible through pin CSYNCO.

It is possible to extract the Hsync and the Vsync signals by using the sync separator from this (C)Hsync signal coming from SOG or coming from the (C)Hsync input.

This function is able to get rid of the additional synchronization pulses in vertical blanking like equalization or serration pulses.

TDA8754_7 © NXP B.V. 2007. All rights reserved.

Triple 8-bit video ADC up to 270 Msample/s

8.9 3-level

When the synchronization pulse of the input of the SOG is 3-level, the system will be able to detect that a 3-level sync is present and will advise the customer if a change is observed by setting bit HPDO = 1 and pin HPDO = HIGH. It is possible to disable this function with bit FTRILEVEL. When this automatic function is disabled, the manual mode will only influence the separator circuitry.

9. I²C-bus register description

9.1 I²C-bus formats

9.1.1 Write 1 register

Each register is programmed independently by giving its subaddress and its data content.

Table 6. I²C-bus sequence for writing 1 register

SDA line	Description
S	master starts with a start condition
Byte 1	master transmits device address (7 bits) plus write command bit $(R/\overline{W} = 0)$
Α	slave generates an acknowledge
Byte 2	master transmits programming mode and register subaddress to write to
Α	slave generates an acknowledge
Byte 3	master transmits data 1
Α	slave generates an acknowledge
Р	master generates a stop condition

Table 7. Byte format for writing 1 register

Bits	7	6	5	4	3	2	1	0
Byte 1			de	vice addre	ss			R/W
	A6	A5	A4	А3	A2	A1	A0	-
	1	0	0	1	1	0	Χ	0
Byte 2	prog	gramming i	mode	register subaddress				
	-	-	MODE	SA4	SA3	SA2	SA1	SA0
	Χ	Χ	0	-	-	-	-	-
Byte 3	data 1							
	D7	D6	D5	D4	D3	D2	D1	D0

Triple 8-bit video ADC up to 270 Msample/s

Table 8. Write format bit description

Bit	Symbol	Description
Byte 1		
7 to 1	A[6:0]	Device address ; the TDA8754 address is 1001 10X; bit A0 relates with the voltage level on pin A0
0	R/W	Write command bit; if $R/\overline{W} = 0$, then write action
Byte 2		
7 to 6	-	not used
5	MODE	Mode selection bit ; if MODE = 0, then each register can be written independently
4 to 0	SA[4:0]	Register subaddress ; subaddress of the selected register (from 0 0000 to 1 1111)
Byte 3		
7 to 0	D[7:0]	Data 1; this value is written in the selected register

9.1.2 Write all registers

All registers are programmed one after the other, by giving this initial condition (XX11 1111) as the subaddress state; thus, the registers are charged following the predefined sequence of 32 bytes (from subaddress 0 0000 to 1 1111).

I²C-bus sequence for writing all registers Table 9.

SDA line	Description
SDA line	Description
S	master starts with a start condition
Byte 1	master transmits device address (7 bits) plus write command bit ($R/\overline{W} = 0$)
Α	slave generates an acknowledge
Byte 2	master transmits programming mode and register subaddress to write to
Α	slave generates an acknowledge
Byte 3	master transmits data 1
Α	slave generates an acknowledge
:	:
Byte 34	master transmits data 32
Α	slave generates an acknowledge
Р	master generates a stop condition

Table 10. Byte format for writing all registers

Bits	7	6	5	4	3	2	1	0
Byte 1			de	vice addre	ess			R/W
	A6	A5	A4	А3	A2	A1	A0	-
	1	0	0	1	1	0	Χ	0
Byte 2	programming mode			register subaddress				
	-	-	MODE	SA4	SA3	SA2	SA1	SA0
	Χ	Χ	0	1	1	1	1	1
Byte (2 + n)				dat	ta n			
	D7	D6	D5	D4	D3	D2	D1	D0

19 of 57

© NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

Table 11. Write format bit description

		·
Bit	Symbol	Description
Byte 1		
7 to 1	A[6:0]	Device address ; the TDA8754 address is 1001 10X; bit A0 relates with the voltage level on pin A0
0	R/\overline{W}	Write command bit; if $R/\overline{W} = 0$, then write action
Byte 2		
7 to 6	-	not used
5	MODE	Mode selection bit ; if MODE = 1, then all registers can be written one after the other
4 to 0	SA[4:0]	Register subaddress; initial condition is XX11 to 1111
Byte (2	+ n)	
7 to 0	D[7:0]	Data n; this value is written in register 00h + n

9.1.2.1 Read register

Table 12. I²C-bus sequence for reading one register

SDA line	Description
S	master starts with a start condition
Byte 1	master transmits device address (7 bits) plus write command bit $(R/\overline{W} = 0)$
Α	slave generates an acknowledge
Byte 2	master transmits programming mode and register subaddress to read from
Α	slave generates an acknowledge
Byte 3	master transmits read register subaddress
Α	slave generates an acknowledge
Byte 4	master transmits device address (7 bits) plus read command bit $(R/\overline{W} = 1)$
Α	slave generates an acknowledge
Byte 5	slave transmits data to master
Ā	master generates an not-acknowledge after reading the data byte
Р	master generates a stop condition

Table 13. Byte format for reading register

Bits	7	6	5	4	3	2	1	0
Byte 1			de	vice addre	ss			R/W
	A6	A5	A4	А3	A2	A1	A0	-
	1	0	0	1	1	0	Х	0
Byte 2	programming mode							
	-	-	MODE	SA4	SA3	SA2	SA1	SA0
	Х	Χ	0	1	1	1	1	1
Byte 3	read subaddress							
	-	-	-	-	-	-	RA1	RA0
	0	0	0	0	0	0	-	-

20 of 57

TDA8754_7 © NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

Table 13. Byte format for reading register ... continued

Bits	7	6	5	4	3	2	1	0
Byte 4			de	evice addre	ss			R/\overline{W}
	A6	A5	A4	A3	A2	A1	Α0	-
	1	0	0	1	1	0	Χ	1
Byte 5				dat	a 1			
	D7	D6	D5	D4	D3	D2	D1	D0

Table 14. Read format bit description

Bit	Symbol	Description
Byte 1		
7 to 1	A[6:0]	Device address ; the TDA8754 address is 1001 10X; bit A0 relates to the voltage level on pin A0
0	R/W	Write command bit; if $R/\overline{W} = 0$, then write action
Byte 2		
7 to 6	-	not used
5	MODE	Mode selection bit ; if MODE = 0, then each register can be written independently
4 to 0	SA[4:0]	Register subaddress; subaddress of the read register (1 1111)
Byte 3		
7 to 0	RA[1:0]	Read address; this is the value of the read register to be selected
Byte 4		
7 to 1	A[6:0]	Device address ; the TDA8754 address is 1001 10X. Bit A0 relates with the voltage level on pin A0
0	R/\overline{W}	Read command bit ; if $R/\overline{W} = 1$, then read action
Byte 5		
7 to 0	D[7:0]	Data 1; the value from read register is sent from the slave to the master

Triple 8-bit video ADC up to 270 Msample/s

9.2 I²C-bus registers overview

Addr Name Bit									Reset value
								LSB	
7 6 5		2		4	က	7	-	0	
OFFSETR OR7 OR6 OR5		OR5		OR4	OR3	OR2	OR1	ORO	0000 0000
COARSER OR8 CR6 CR5		CR5		CR4	CR3	CR2	CR1	CRO	0100 0110
FINER				ı	ı	FR2	FR1	FRO	000X XXXX
OFFSETG OG7 OG6 OG5		065		064	063	062	OG1	090	0000 0000
COARSEG OG8 CG6 CG5		CG5		CG4	CG3	CG2	CG1	090	01100 0110
FINEG	1					FG2	FG1	FG0	000X XXXX
OFFSETB OB7 OB6 OB5		0B5		OB4	OB3	OB2	OB1	OBO	0000 0000
COARSEB OB8 CB6 CB5		CB5		CB4	CB3	CB2	CB1	CB0	0100 0110
FINEB	ı	ı		ı	ı	FB2	FB1	FB0	000X XXXX
SOG DO UP FTRILEVEL		FTRILE	VEL	STRILEVEL	CKREFS	SOGSEL	SOGI1	SOGIO	0000 0001
PLLCTRL IP1 IP0 Z2		22		Z1	Z0	DR2	DR1	DR0	0101 1100
PHASE PA4 PA3 PA2		PA2		PA1	PA0	VCO2	VCO1	VCO0	0000 0101
DIVMSB CKEXT SCH EPSI1 CKREFO	EFO	EPS11		EPS10	DI11	DI10	DI9	DI8	0000 0110
DIVLSB DI7 DI6 DI5		DI5		D14	DI3	DI2	DI1	DIO	1001 1000
HSYNCL HSYNCL9 HSYNCL8 HSYNCL7		HSYNC	7.7	HSYNCL6	HSYNCL5	HSYNCL4	HSYNCL3	HSYNCL2	0010 0100
HBACKL HSYNCL1 HSYNCL0 HBACKL9		HBAC	(L9	HBACKL8	HBACKL7	HBACKL6	HBACKL5	HBACKL4	0000 1111
HDISPLMSB HBACKL3 HBACKL2 HBACKL1		HBAC	(L1	HBACKL0	HDISPL11	HDISPL10	HDISPL9	HDISPL8	1000 0101
HDISPLLSB HDISPL7 HDISPL6 HDISPL5		HDISP	L5	HDISPL4	HDISPL3	HDISPL2	HDISPL1	HDISPL0	0000 0000
COAST PRECOAST2 PRECOAST1 PRECO	Σ	PREC(PRECOAST0	POST COAST4	POST COAST3	POST COAST2	POST COAST1	POST COAST0	0000 0000
HSYNCSEL		ı			TESTCNT	BYSEPA	HSSEL	HSS	XXXX 0100
VSYNCSEL		ı		TSTCOAST	COE	NSS	COSSEL2	COSSEL1	0000 0XXX
CLAMP - HSOSEL CLPSEL2		CLPSEL	-2	CLPSEL1	СГРН	CLPENL	ICLP	CLPT	X010 0000
INVERTER - COS CLPS		CLPS		CKREFOINV	DEOINVRGB	HSOINVRGB	VSOINVRGB	FIELDOINV	X000 0000
OUTPUT RGBSEL TEN AGCSEL1		AGCS	EL1	AGCSELO	BLKEN	DMXRGB	ODDARGB	SHIFTRGB	0000 0000
OUTPUTEN1	1			BOENRGB	AOENRGB	OROEN	TOUTERGB	TOUTSRGB	XXX1 1100
OUTPUTEN2 CKROEN CSOEN DEOE		DEOE	DEOENRGB	HSOENRGB	HPDOEN	VSOENRGB	CLPOEN	FIELDOEN	1111 1111

TDA8754_7

22 of 57

Triple 8-bit video ADC up to 270 Msample/s

Table	Table 15. I ² C-bus analog write registers continued	alog write regi	isters continu	pər							
Addr	Addr Name	Bit									Reset value
		MSB								LSB	
		7	9		ۍ	4	က	7	-	0	
1Ah	1Ah CLKOUTPUT					CKSELRGB	CKSELRGB DLYCLKRGB CKDATINV	CKDATINV	OUTOSCILL	OUTOSCILL CKOENRGB XXX0 0001	XXX0 0001
1Bh	INTOSC	ı	ı	ı		ı	1	ı	SWITCHOSC	SWITCHOSC INTOSCOFF XXXX XX00	00XX XXXX
1Ch	1Ch reserved										
1Dh	reserved										
1Eh	PWRMGT	ı	ı	ı		ı	SHCKDMX	SHCKADC	STBY	DVIRGB	0000 XXXX
1Fh	READADDR	1				•	1	1	ADDR1	ADDR0	XXXX XX00

	Table 16.	Table 16. PC-bus analog read registers 11	read registers								
	Addr	Name	Bit								Reset value
			MSB							LSB	
Re			7	ဖ	ß	4	က	2	-	0	
v. 07	ADDR[0:0]	ADDR[0:0] VERSION	ı		ı	ı	VER3	VER2	VER1	VERO	0000 XXXX
· — ;	ADDR[0:1] SIGN	SIGN	ı	ı	POLVS2	POLVS1	POLCHS2	POLCHS1	POLHS2	POLHS1	0000 00XX
3 Ma	ADDR[1:0]	ADDR[1:0] ACTIVITY1	ACVS2	ACVS1	ACSOG2	ACSOG1	ACCHS2	ACCHS1	ACHS2	ACHS1	0000 0000
ıy 20	ADDR[1:1]	ADDR[1:1] ACTIVITY2	•	ASD	3LEVEL	ACFIELD	HPDO	ACVSSEP	ACRXC1	ACRXC0	X000 0000

The read register address is specified with bits ADDR1 and ADDR0 of register READADDR.

Ξ

TDA8754_7

Downloaded from Arrow.com.

© NXP B.V. 2007. All rights reserved.

Triple 8-bit video ADC up to 270 Msample/s

9.3 Offset registers (R, G and B)

The offset registers contain a 9-bit value which controls the clamp level for the RGB channels. The 8 LSBs are in the offset registers and the 1 MSB is in the coarse gain control register. The relationship between the programming code and the level of the clamp code is given in Table 19. The reset value is: clamp code = 0 and ADC output = 0.

Table 17. Offset registers (00h, 03h, 06h) bit allocation

Register	7	6	5	4	3	2	1	0
OFFSETR (00h)	OR7	OR6	OR5	OR4	OR3	OR2	OR1	OR0
OFFSETG (03h)	OG7	OG6	OG5	OG4	OG3	OG2	OG1	OG0
OFFSETB (06h)	OB7	OB6	OB5	OB4	OB3	OB2	OB1	OB0
Reset	0	0	0	0	0	0	0	0

Table 18. Offset registers (00h, 03h, 06h) bit description

Bit	Symbol	Description
OFFSETR	R (address: 00h)	
7 to 0	OR[7:0]	offset R channel; LSB in this register and MSB bit OR8 in register COARSER
OFFSET	6 (address: 03h)	
7 to 0	OG[7:0]	offset G channel; LSB in this register and MSB bit OG8 in register COARSEG
OFFSETE	3 (address: 06h)	
7 to 0	OB[7:0]	offset B channel; LSB in this register and MSB bit OB8 in register COARSEB

Table 19. Coding for clamp level and ADC output

Value	OR8 OG8	OR7 OG7	OR6 OG6	OR5	OR5 OG4	OR3 OG3	OR2 OG2	OR1	OR0 OG0	Clamp code	ADC output (code transition)
	OB8	ОВ7	OB6	OB5	OB4	OB3	OB2	OB1	ОВ0	(decimal)	
1E9h	1	1	1	1	0	1	0	0	0	-24	-24/-23
1EAh	1	1	1	1	0	1	0	0	1	-23	-23/-22
:										:	:
1FFh	1	1	1	1	1	1	1	1	1	-1	-1/0
000h	0	0	0	0	0	0	0	0	0	0	0/1
001h	0	0	0	0	0	0	0	0	1	+1	1/2
:										:	:
03Fh	0	0	0	1	1	1	1	1	1	63	63/64
040h	0	0	1	0	0	0	0	0	0	64	64/65
:										:	:
078h	0	0	1	1	1	1	0	0	0	120	120/121
079h	0	0	1	1	1	1	0	0	1	121	121/122
:										:	:
080h	0	1	0	0	0	0	0	0	0	128	128/129

24 of 57

© NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

Table 19. Coding for clamp level and ADC output ...continued

Value	OR8 OG8 OB8	OR7 OG7 OB7		OG5	OR5 OG4 OB4	OG3		OR1 OG1 OB1		Clamp code (decimal)	ADC output (code transition)
:										:	:
086h	0	1	0	0	0	0	1	1	0	134	134/135
087h	0	1	0	0	0	0	1	1	1	135	135/136

9.4 Coarse registers (R, G and B)

The coarse gain of the AGC is controlled with 7 bits. The code gain can vary from 32 to 95; see Table 22.

Table 20. Coarse gain registers (01h, 04h, 07h) bit allocation with reset

Register	7	6	5	4	3	2	1	0
COARSER (01h)	OR8	CR6	CR5	CR4	CR3	CR2	CR1	CR0
COARSEG (04h)	OG8	CG6	CG5	CG4	CG3	CG2	CG1	CG0
COARSEB (07h)	OB8	CB6	CB5	CB4	CB3	CB2	CB1	CB0
Reset	0	1	0	0	0	1	1	0

Table 21. Coarse gain registers (01h, 04h, 07h) bit description

Bit	Symbol	Description
COARSE	R (address: 01	lh)
7	OR8	offset R channel; MSB bit of offset value
6 to 0	CR[6:0]	coarse gain of the AGC for R channel
COARSE	G (address: 04	4h)
7	OG8	offset G channel; MSB bit of offset value
6 to 0	CG[6:0]	coarse gain of the AGC for G channel
COARSE	B (address: 07	7h)
7	OB8	offset B channel; MSB bit of offset value
6 to 0	CB[6:0]	coarse gain of the AGC for B channel

Table 22. Coarse register

Value	CR6	CR5	CR4	CR3	CR2	CR1	CR0	V _i (full-scale)	Gain ADC
	CG6	CG5	CG4	CG3	CG2	CG1	CG0		
	CB6	CB5	CB4	СВЗ	CB2	CB1	СВ0		
32	0	1	0	0	0	0	0	1.000	1.000
33	0	1	0	0	0	0	1	0.992	1.008
:								:	:
63	0	1	1	1	1	1	1	0.753	1.328
64	1	0	0	0	0	0	0	0.746	1.340
65	1	0	0	0	0	0	1	0.738	1.355
:								:	:
69	1	0	0	0	1	0	1	0.706	1.416

Triple 8-bit video ADC up to 270 Msample/s

Table 22. Coarse register ... continued

Value	CR6	CR5	CR4	CR3	CR2	CR1	CR0	V _i (full-scale)	Gain ADC
	CG6	CG5	CG4	CG3	CG2	CG1	CG0		
	СВ6	CB5	CB4	СВЗ	CB2	CB1	СВ0		
70	1	0	0	0	1	1	0	0.698	1.432
								:	:
95	1	0	1	1	1	1	1	0.500	2.000

9.5 Fine registers (R, G and B)

Fine gain control is done with 3 bits allowing 8 intermediate values between two values of consecutive coarse gain.

Table 23. Fine gain registers (02h, 05h, 08h) bit allocation with reset

Register	7	6	5	4	3	2	1	0
FINER (02h)	-	-	-	-	-	FR2	FR1	FR0
FINEG (05h)	-	-	-	-	-	FG2	FG1	FG0
FINEB (08h)	-	-	-	-	-	FB2	FB1	FB0
Reset	Х	Χ	Χ	Χ	Х	0	0	0

Table 24. Fine gain registers (02h, 05h, 08h) bit description

Bit	Symbol	Description
FINER (a	address: 02h)	
7 to 3	-	not used
2 to 0	FR[2:0]	fine gain of the AGC for R channel
FINEG (address: 05h)	
7 to 3	-	not used
2 to 0	FG[2:0]	fine gain of the AGC for G channel
FINEB (a	address: 08h)	
7 to 3	-	not used
2 to 0	FB[2:0]	fine gain of the AGC for B channel

Table 25. Fine gain control bits (example for coarse register value 32)

Value	FR2 FG2	FR1 FG1	FR0 FG0	Fine steps of gain ADC
	FB2	FB1	FB0	
0	0	0	0	1.000
1	0	0	1	1.001
2	0	1	0	1.002
3	0	1	1	1.003
4	0	0	0	1.004
5	0	0	1	1.005
6	0	1	0	1.006
7	1	1	1	1.007

TDA8754_7 © NXP B.V. 2007. All rights reserved.

Triple 8-bit video ADC up to 270 Msample/s

27 of 57

9.6 Sync-on-green register

Table 26. SOG - sync-on-green register (address 09h) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	DO	UP	FTRILEVEL	STRILEVEL	CKREFS	SOGSEL	SOGI1	SOGI0
Reset	0	0	0	0	0	0	0	1
Access	W	W	W	W	W	W	W	W

Table 27. SOG - sync-on-green register (address 09h) bit description

Bit	Symbol	Description
7	DO	test bit for forcing charge pump current down
		0 = reset value
		1 = forcing down
6	UP	test bit for forcing charge pump current up
		0 = reset value
		1 = forcing up
5	FTRILEVEL	defines the 3-level function mode
		0 = automatic 3-level
		1 = level selection with bit STRILEVEL
4	STRILEVEL	forces the state of 3-level function
		0 = not 3-level mode
		1 = 3-level mode
3	CKREFS	enables the PLL Ckref signal to be selected
		0 = same as input
		1 = input inverted
2	SOGSEL	enables the reference PLL between HSYNC input and SOG input to be selected
		0 = HSYNC input
		1 = SOG input
1 to 0	SOGI[1:0]	defines the SOG charge pump current; values are given in % of sync pulse/line length
		00 = 14.8 % maximum (TV standards) and non-VESA standards
		01 = 12.6 % maximum (all standards)
		10 = 8.6 % maximum (HDTV standards) and non-VESA standards
		11 = 0 test mode

9.7 PLL control register

Table 28. PLLCTRL- PLL control register (address 0Ah) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	IP1	IP0	Z2	Z1	Z0	DR2	DR1	DR0
Reset	0	1	0	1	1	1	0	0
Access	W	W	W	W	W	W	W	W

© NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

Table 29. PLLCTRL - PLL control register (address 0Ah) bit description

Bit	Symbol	Description
7 to 6	IP[1:0]	charge pump current value to increase the bandwidth of the PLL
		$00 = 800 \mu\text{A}$
		01 = 1200 μΑ
		10 = 1600 μΑ
		11 = 2000 μA
5 to 3	Z[2:0]	internal resistance value for the Voltage Controlled Oscillator (VCO) filter to be selected
		000 = not used
		001 = 1.56 kΩ
		$010 = 1.25 \text{ k}\Omega$
		$011 = 1.00 \text{ k}\Omega$
		$100 = 0.80 \text{ k}\Omega$
		101 = 0.64 kΩ
		110 = $0.51 \text{ k}\Omega$
		111 = $0.41 \text{ k}\Omega$
3 to 0	DR[2:0]	PLL temperature phase drift to be compensated. The optimized value of this register is 001. These bits add a delay on the clock reference input of the PLL as a function of the temperature of the die.
		000 = +1.75 step phase
		001 = -0.3 step phase
		010 = -4.3 step phase
		011 = -6.2 step phase
		100 = -2.2 step phase

9.8 Phase register

Table 30. PHASE - phase register (address 0Bh) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	PA4	PA3	PA2	PA1	PA0	VCO2	VCO1	VCO0
Reset	0	0	0	0	0	1	0	1
Access	W	W	W	W	W	W	W	W

Table 31. PHASE - phase register (address 0Bh) bit description

Bit	Symbol	Description
7 to 4	PA[4:0]	phase shift value for the clock pixel; see <u>Table 32</u>
3 to 0	VCO[2:0]	VCO gain control; see <u>Table 33</u>

Triple 8-bit video ADC up to 270 Msample/s

Table 32. Phase registers bits

PA4	PA3	PA2	PA1	PA0	Phase shift (deg)
0	0	0	0	0	0
0	0	0	0	1	11.25
:	:	:	:	:	:
1	1	1	1	0	337.50
1	1	1	1	1	348.75

Table 33. VCO gain control

VCO2	VCO1	VCO0	VCO gain (MHz/V)	Pixel clock frequency (MHz)
0	0	0	13	12 to 22
0	0	1	30	22 to 45
0	1	0	60	45 to 62
0	1	1	60	62 to 85
1	0	0	105	85 to 120
1	0	1	105	120 to 176
1	1	0	135	176 to 270
1	1	1	no oscillation	-

9.9 PLL divider registers

Table 34. DIVMSB - PLL divider ratio (MSB) register (address 0Ch) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	CKEXT	SCHCKREFO	EPSI1	EPSI0	DI11	DI10	DI9	DI8
Reset	0	0	0	0	0	1	1	0
Access	W	W	W	W	W	W	W	W

Table 35. DIVMSB - PLL divider ratio (MSB) register (address 0Ch) bit description

Bit	Symbol	Description	
7	CKEXT	external clock selection	
		0 = internal PLL	
		1 = external clock	
6	SCH CKREFO	shift of pixel counter reference (Ckref) with one clock pixel period	
		CKREFO	CKREFO
		1 = active	
5 to 4	EPSI[1:0]	enables the resynchronization edge of CKREFO to be selected; they are test bits	
		00 = reset value for proper operation	
3 to 0	DI[11:8]	PLL divider ratio; these are the 4 MSBs of the 12-bit value; see Table 38	

Triple 8-bit video ADC up to 270 Msample/s

Table 36. DIVLSB - PLL divider ratio (LSB) register (address 0Dh) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	DI7	DI6	DI5	DI4	DI3	DI2	DI1	DI0
Reset	1	0	0	1	1	0	0	0
Access	W	W	W	W	W	W	W	W

Table 37. DIVLSB - PLL divider ratio (LSB) register (address 0Dh) bit description

Bit	Symbol	Description
7 to 0	DI[7:0]	PLL divider ratio; these are the 8 LSBs of the 12-bit value; see Table 38

Table 38. PLL divider ratio

DI11	VDI10	VDI9	VDI8	VDI7	VDI6	VDI5	VDI4	DI3	DI2	DI1	DI0	PLL divider ratio
0	0	0	0	0	1	1	0	0	1	0	0	100
:	:	:	:	:	:	:	:	:	:	:	:	
1	1	1	1	1	1	1	1	1	1	1	1	4095

9.10 Horizontal sync registers

Remark: The sum of HSYNCL[9:0] + HBACKL[9:0] + HDISPL[9:0] + 16 needs to be smaller than the PLL divider.

Table 39. HSYNCL, HBACKL and HDISPL (address 0Eh, 0Fh, 10h, 11h) bit allocation

7	6	5	4	3	2	1	0				
	Register address 0Eh										
HSYNCL9	HSYNCL8	HSYNCL7	HSYNCL6	HSYNCL5	HSYNCL4	HSYNCL3	HSYNCL2				
0	0	1	0	0	1	0	0				
	Register address 0Fh										
HSYNCL1	HSYNCL0	HBACKL9	HBACKL8	HBACKL7	HBACKL6	HBACKL5	HBACKL4				
0	0	0	0	1	1	1	1				
			Register a	ddress 10h							
HBACKL3	HBACKL2	HBACKL1	HBACKL0	HDISPL11	HDISPL10	HDISPL9	HDISPL8				
1	0	0	0	0	1	0	1				
			Register a	ddress 11h							
HDISPL7	HDISPL6	HDISPL5	HDISPL4	HDISPL3	HDISPL2	HDISPL1	HDISPL0				
0	0	0	0	0	0	0	0				

Table 40. Sync registers (0Eh to 11h) bit description

Bit	Symbol	Description
9 to 0	HSYNCL[9:0]	length of the Hsync signal; in number of pixel clock cycles; minimum value is 16
9 to 0	HBACKL[9:0]	interval between the Hsync active edge and the first active pixel; in number of pixels; minimum value is 16
11 to 0	HDISPL[11:0]	number of active pixels for one line; length of the data enable signal; minimum value is 16

TDA8754_7 © NXP B.V. 2007. All rights reserved.

Triple 8-bit video ADC up to 270 Msample/s

9.11 Coast register

Remark: When POSTCOAST[4:0] = PRECOAST[2:0] = 0, then the coast pulse equals the VSYNC input.

Table 41. COAST - coast register (address 12h) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	PRE COAST2	PRE COAST1	PRE COAST0	POST COAST4	POST COAST3	POST COAST2	POST COAST1	POST COAST0
Reset	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W

Table 42. COAST - coast register (address 12h) bit description

Bit	Symbol	Description
7 to 5	PRECOAST[2:0]	programs the length (in numbers of pixel clocks) of the coast pulse before the edge of the vertical sync signal
4 to 0	POSTCOAST[4:0]	programs the length (in numbers of pixel clocks) of the coast pulse after the edge of the vertical sync signal

9.12 Horizontal sync selection register

Table 43. HSYNCSEL - horizontal sync selection register (address 13h) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	TESTCNT	BYSEPA	HSSEL	HSS
Reset	Х	Х	Χ	Х	0	1	0	0
Access	W	W	W	W	W	W	W	W

Table 44. HSYNCSEL - horizontal sync selection register (address 13h) bit description

Bit	Symbol	Description
7 to 4	-	not used
3	TESTCNT	this bit is used to test the pixel counter
		0 = normal mode
		1 = test mode
2	BYSEPA	enables the sync separator for the PLL reference to be bypassed
		0 = Hsync from the separator
		1 = bypass of the sync separator
1	HSSEL	enables either the HSYNC or CHSYNC input signal to be selected
		0 = HSYNC input
		1 = CHSYNC input
0	HSS	enables either the HSYNC or CHSYNC input signal to be inverted
		0 = non-inverted
		1 = inverted

Triple 8-bit video ADC up to 270 Msample/s

9.13 Vertical sync selection register

Table 45. VSYNCSEL - vertical sync selection register (address 14h) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	-	TSTCOAST	COE	VSS	COSSEL2	COSSEL1
Reset	Х	Х	X	0	0	0	0	0
Access	W	W	W	W	W	W	W	W

Table 46. VSYNCSEL - vertical sync selection register (address 14h) bit description

nbol	Description
	not used
COAST	switches a multiplexer to select the output signal on pin VSYNCO
	0 = output of the separator function
	1 = output of the coast function
=	enables coast mode
0 = coast mode	0 = coast mode
	1 = no coast mode
3	enables VSYNC input signal to be inverted
	0 = non-inverted
	1 = inverted
SSEL2	selects signal for coast PLL mode
	0 = signal selected with bit COSSEL1
	1 = pin coast
SSEL1	can be used for the coast PLL mode; see bit COSSEL2
	0 = VSYNC input
	1 = VSYNC from the sync separator
	COAST

9.14 Clamp register

Table 47. CLAMP - clamp register (address 15h) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	-	HSOSEL	CLPSEL2	CLPSEL1	CLPH	CLPENL	ICLP	CLPT
Reset	X	0	1	0	0	0	0	0
Access	W	W	W	W	W	W	W	W

Table 48. CLAMP - clamp register (address 15h) bit description

Bit	Symbol	Description
7	-	not used
6	HSOSEL	defines the signal on the output HSYNCO; see Section 8.3
		0 = Hsync from the Hcounter
		1 = Ckref is reference of the PLL
5	CLPSEL2	can be used to select the clamp signal
		0 = Hsync signal generated by the pixel counter
		1 = signal selected with bit CLPSEL1

TDA8754_7 © NXP B.V. 2007. All rights reserved.

Triple 8-bit video ADC up to 270 Msample/s

Table 48. CLAMP - clamp register (address 15h) bit description ...continued

	B 1.4
Symbol	Description
CLPSEL1	can be used to select the clamp signal; see bit CLPSEL2
	0 = PLL reference signal
	1 = clamp input
CLPH	inhibits the clamp signal during the Vsynco or coast signal; see bit TSTCOAST (Table 46)
	0 = clamp inhibited during Vsynco
	1 = clamp active during Vsynco
CLPENL	defines if clamp input works on edge or on level
	0 = on edge; for all frequencies (must be preferably chosen)
	1 = on level; only for frequencies below 45 MHz to have proper clamp function
ICLP	dedicated for test mode; should be forced to logic 0
CLPT	defines if the test mode of the clamp is active
	0 = not active
	1 = active
	CLPH CLPENL ICLP

9.15 Inverter register

Table 49. INVERTER - inverter register (address 16h) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	-	COS	CLPS	CKREFOINV	DEOINVRGB	HSOINVRGB	VSOINVRGB	FIELDOINV
Reset	Х	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W

Table 50. INVERTER - inverter register (address 16h) bit description

Bit	Symbol	Description
7	-	not used
6	COS	enables the COAST input signal to be inverted
		0 = non-inverted
		1 = inverted
5	CLPS	enables the CLAMP input signal to be inverted
		0 = non-inverted
		1 = inverted
4	CKREFOINV	enables the output CKREFO to be inverted
		0 = non-inverted
		1 = inverted
3	DEOINVRGB	enables the output DEO to be inverted
		0 = non-inverted
		1 = inverted
2	HSOINVRGB	enables the output HSYNCO to be inverted
		0 = non-inverted
		1 = inverted

TDA8754_7 © NXP B.V. 2007. All rights reserved.

Triple 8-bit video ADC up to 270 Msample/s

Table 50. INVERTER - inverter register (address 16h) bit description ...continued

Bit	Symbol	Description		
1	VSOINVRGB	enables the output VSYNCO to be inverted		
		0 = non-inverted		
		1 = inverted		
0	FIELDOINV	enables the output FIELDO to be inverted		
		0 = non-inverted		
		1 = inverted		

9.16 Output register

Table 51. OUTPUT - output register (address 17h) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	RGBSEL	TEN	AGCSEL1	AGCSEL0	BLKEN	DMXRGB	ODDARGB	SHIFTRGB
Reset	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W

Table 52. OUTPUT- output register (address 17h) bit description

Bit	Symbol	Description
7	RGBSEL	defines which RGB input will be used
		0 = input 1
		1 = input 2
6	TEN	enables the track and hold operating mode to be selected
		0 = mode enable; must be set to logic 0 for proper operation
		1 = mode disable
5 to 4	AGCSEL[1:0]	define the output on pin AGCO
		00 = RAGC
		01 = GAGC
		10 = BAGC
		11 = not used
3	BLKEN	inhibits the blanking mode during clamp
		0 = blanking active; during the blanking period, the RGB outputs of the ADC are fixed at the values of registers OFFSETR, OFFSETG and OFFSETB if these values are greater or equal to 0, or forced to 0 if these values are negative.
		1 = blanking not active
2	DMXRGB	determines whether all pixels go to port A or if pixels go alternately to port A and B. The maximum data rate for single port mode is 140 MHz and it is 270 MHz in dual port mode.
		0 = port A
		1 = port A and B
1	ODDARGB	defines the parity of the pixels
		0 = even pixel on port A
		1 = odd pixel on port A
0	SHIFTRGB	defines output on port A and B
		0 = synchronous
		1 = interleaved
TDA8754_7		© NXP B.V. 2007. All rights reserve

Triple 8-bit video ADC up to 270 Msample/s

9.17 Output enable register 1

Table 53. OUTPUTEN1 - output enable 1 register (address 18h) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	-	BOENRGB	AOENRGB	OROEN	TOUTERGB	TOUTSRGB
Reset	X	Χ	Χ	1	1	1	0	0
Access	W	W	W	W	W	W	W	W

Table 54. OUTPUTEN1 - output enable 1 register (address 18h) bit description

		Far comme : 3 (aman)
Bit	Symbol	Description
7 to 5	-	not used
4	BOENRGB	enables output port B to be set to high-impedance
		0 = active signal
		1 = high-impedance
3	AOENRGB	enables output port A to be set to high-impedance
		0 = active signal
		1 = high-impedance
2	OROEN	enables outputs Out Of Range to be set to high-impedance
		0 = active signal
		1 = high-impedance
1	TOUTERGB	defines if the test mode of the output buffer is active or not
		0 = mode normal
		1 = mode test
0	TOUTSRGB	defines the state of the output in test mode
		0 = forces output to LOW
		1 = forces output to HIGH

9.18 Output enable register 2

Table 55. OUTPUTEN2 - output enable 2 register (address 19h) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	CKROEN	CSOEN	DEOENRGB	HSOENRGB	HPDOEN	VSOENRGB	CLPOEN	FIELDOEN
Reset	1	1	1	1	1	1	1	1
Access	W	W	W	W	W	W	W	W

Table 56. OUTPUTEN2 - output enable 2 register (address 19h) bit description

Bit	Symbol	Description	
7	CKROEN	enables the output CKREFO to be set to high-impedance	
		0 = active signal	
		1 = high-impedance	
6	CSOEN	enables the output CSYNCO to be set to high-impedance	
		0 = active signal	
		1 = high-impedance	

DA8754_7 © NXP B.V. 2007. All rights reserved.

Triple 8-bit video ADC up to 270 Msample/s

Table 56. OUTPUTEN2 - output enable 2 register (address 19h) bit description ...continued

Bit	Symbol	Description
5	DEOENRGB	enables the output DEO to be set to high-impedance
		0 = active signal
		1 = high-impedance
4	HSOENRGB	enables the output HSYNCO to be set to high-impedance
		0 = active signal
		1 = high-impedance
3	HPDOEN	enables the output HPDO to be set to high-impedance
		0 = active signal
		1 = high-impedance
2	VSOENRGB	enables the output VSYNCO to be set to high-impedance
		0 = active signal
		1 = high-impedance
1	CLPOEN	enables the output CLPO to be set to high-impedance
		0 = active signal
		1 = high-impedance
0	FIELDOEN	enables the output FIELDO to be set to high-impedance
		0 = active signal
		1 = high-impedance

9.19 Clock output register

Table 57. CLKOUTPUT - clock output register (address 1Ah) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	-	CKSELRGB	DLYCLKRGB	CKDATINV	OUTOSCILL	CKOENRGB
Reset	Х	Х	Х	0	0	0	0	1
Access	Е	W	W	W	W	W	W	W

Table 58. CLKOUTPUT - clock output register (address 1Ah) bit description

Bit	Symbol	Description		
7 to 5	-	not used		
4	CKSELRGB	enables the selection of the signal on the pin CKDATA		
		0 = clock of output buffers; signal Ckdata		
		1 = pixel clock of the converter; signal Ckadco		
3	DLYCLKRGB	enables a delay of 2 ns to be added to the clock Ckdata		
		0 = no delay		
		1 = 2 ns delay		
2	CKDATINV	enables the polarity of the output CKDATA to be inverted		
		0 = non-inverted		
		1 = inverted		

Triple 8-bit video ADC up to 270 Msample/s

Table 58. CLKOUTPUT - clock output register (address 1Ah) bit description ...continued

Bit	Symbol	Description
1	OUTOSCILL	enables pin CKDATA to be switched with a multiplexer to have signal Ckdata or the internal oscillator on the output
		0 = Ckdata
		1 = for test
0	CKOENRGB	enables the output CKDATA to be set to high-impedance
		0 = active signal
		1 = high-impedance

9.20 Internal oscillator register

Table 59. INTOSC - internal oscillator register (address 1Bh) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	SWITCHOSC	INTOSCOFF
Reset	Х	Χ	Χ	Χ	X	X	0	0
Access	W	W	W	W	W	W	W	W

Table 60. INTOSC - internal oscillator register (address 1Bh) bit description

Bit	Symbol	Description
7 to 2	-	not used
1	SWITCHOSC	enables a multiplexer to be switched; signal insertion on the input of the separator and coast block, between the internal oscillator and pin CKEXT
		0 = normal case; if this bit is switched from logic 1 to logic 0, then an internal reset of the coast, activity detection and sync separator is done
		1 = test mode
0	INTOSCOFF	disables the internal oscillator for the separator function, the coast gate and activity detection
		0 = active; if this bit is switched from logic 1 to logic 0, then an internal reset of the coast, activity detection and sync separator is done
		1 = disabled

9.21 Power management register

Table 61. PWRMGT - power management register (address 1Eh) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	SHCKDMX	SHCKADC	STBY	DVIRGB
Reset	Х	Χ	Χ	Х	0	0	0	0
Access	W	W	W	W	W	W	W	W

Table 62. PWRMGT - power management register (address 1Eh) bit description

Bit	Symbol	Description
7 to 4	-	not used
3	SHCKDMX	test bits; should be set to logic 0 for proper operation
2	SHCKADC	test bits; should be set to logic 1 for better performances

TDA8754_7 © NXP B.V. 2007. All rights reserved.

Triple 8-bit video ADC up to 270 Msample/s

Table 62. PWRMGT - power management register (address 1Eh) bit description ...continued

Bit	Symbol	Description
1	STBY	enables the RGB block to be forced into the Standby mode, except activity detection, I ² C-bus registers. In the Standby mode, all outputs are in high-impedance state, except pin HPDO which is still active. If the IC is in the Power-down mode, this bit has no effect
		0 = IC active
		1 = Standby mode
0	DVIRGB	this bit must be set to logic 0 for proper operation

9.22 Read register

Table 63. READADDR - read register (address 1Fh) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	ADDR1	ADDR0
Reset	Х	Χ	Χ	Χ	Χ	Х	0	0
Access	W	W	W	W	W	W	W	W

Table 64. READADDR - read register (address 1Fh) bit description

Bit	Symbol	Description			
7 to 2	-	not used			
1 to 0 ADDR[1:0]		register address to be read			
		00 = read register 0			
		01 = read register 1			
		10 = read register 2			
		11 = read register 3			

9.23 Version register

Table 65. VERSION - version register (read register 0) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	VER3	VER2	VER1	VER0
Reset	Х	Χ	Χ	Х	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 66. VERSION - version register (read register 0) bit description

Bit	Symbol	Description
7 to 4	-	not used
3 to 0	VER[3:0]	version of the IC

9.24 Sign detection register

The sign bits are set at logic 0 when the input is a mostly LOW input signal.

DA8754_7 © NXP B.V. 2007. All rights reserved.

Triple 8-bit video ADC up to 270 Msample/s

Table 67. SIGN - sign register (read register 1) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	POLVS2	POLVS1	POLCHS2	POLCHS1	POLHS2	POLHS1
Reset	X	Х	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 68. SIGN - sign register (read register 1) bit description

Bit	Symbol	Description
7 to 6	-	not used
5	POLVS2	sign of VSYNC2 input
		0 = non inverted
		1 = inverted
4	POLVS1	sign of VSYNC1 input
		0 = non inverted
		1 = inverted
3	POLCHS2	sign of CHSYNC2 input
		0 = non inverted
		1 = inverted
2	POLCHS1	sign of CHSYNC1 input
		0 = non inverted
		1 = inverted
1	POLHS2	sign of HSYNC2 input
		0 = non inverted
		1 = inverted
0	POLHS1	sign of HSYNC1 input
		0 = non inverted
		1 = inverted

9.25 Activity detection 1 register

Table 69. ACTIVITY1 - activity detection 1 register (read register 2) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	ACVS2	ACVS1	ACSOG2	ACSOG1	ACCHS2	ACCHS1	ACHS2	ACHS1
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Product data sheet

Rev. 07 — 3 May 2007 39 of 57

Triple 8-bit video ADC up to 270 Msample/s

Table 70. ACTIVITY1 - activity detection 1 register (read register 2) bit description

	7.0	delivity detection is register (read register 2) bit description	
Bit	Symbol	Description	
7	ACVS2	activity of VSYNC2 input	
		0 = not active	
		1 = active	
6	ACVS1	activity of VSYNC1 input	
		0 = not active	
		1 = active	
5	ACSOG2	activity of SOGIN2 input	
		0 = not active	
		1 = active	
4	ACSOG1	activity of SOGIN1 input	
			0 = not active
		1 = active	
3	ACCHS2	activity of CHSYNC2 input	
		0 = not active	
		1 = active	
2	ACCHS1	activity of CHSYNC1 input	
		0 = not active	
		1 = active	
1	ACHS2	activity of HSYNC2 input	
		0 = not active	
		1 = active	
0	ACHS1	activity of HSYNC2 input	
		0 = not active	
		1 = active	

9.26 Activity detection register 2

Remark: It should be noted that activity, sign and polarity detection will be correctly set after a maximum delay of: 6 frame periods + 50 ms.

Table 71. ACTIVITY2 - activity detection 2 register (read register 3) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	-	ASD	3LEVEL	ACFIELD	HPDO	ACVSSEP	ACRXC1	ACRXC0
Reset	Х	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Triple 8-bit video ADC up to 270 Msample/s

Table 72. ACTIVITY2 - activity detection 2 register (read register 3) bit description

Bit	Symbol	Description
7	-	not used
6	ASD	indicates if parasite sync pulses have been detected
		0 = not detected
		1 = detected
5	3LEVEL	state of the sync separator input
		0 = Hsync
		1 = 3-level Hsync
4	ACFIELD	activity of the sync separator FIELDO output
		0 = not active
		1 = active
3	HPDO	copy of the HPDO output state
		0 = stable state on input
		1 = new input
2	ACVSSEP	activity of the sync separator (Vsync output)
		0 = not active
		1 = active
1	ACRXC1	test bit
0	ACRXC0	test bit

10. Limiting values

Table 73. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+5	V
ΔV_{CC}	supply voltage differences		-0.5	+0.5	V
Vi	input voltage	referred to GNDA	-0.5	+4.5	V
$V_{i(SCL)}$	I ² C-bus clock input voltage	referred to GNDD	-0.5	+6.5	V
$V_{i(SDA)}$	I ² C-bus data input voltage	referred to GNDD	-0.5	+6.5	V
Io	output current		-	50	mA
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		-10	+70	°C
Tj	junction temperature		-	150	°C
V _{esd}	electrostatic discharge voltage	human body model, LQFP144 package	-3000	+3000	V

Triple 8-bit video ADC up to 270 Msample/s

11. Thermal characteristics

Table 74. Thermal Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-a)}	thermal resistance from junction	in free air; JEDEC4L				
	to ambient	LQFP144 package	-	35	-	K/W
		LBGA208 package	-	30	-	K/W
R _{th(j-c)}	thermal resistance from junction to case	LQFP144 package	-	8.1	8.5	K/W

12. Characteristics

Table 75. Characteristics

 T_{amb} = 25 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
Supplies						
V_{CCA}	analog supply voltage		3.0	3.3	3.6	V
V_{CCD}	digital supply voltage		3.0	3.3	3.6	V
V_{CCO}	output stage supply voltage		3.0	3.3	3.6	V
I _{CCA}	analog supply current		-	180	-	mA
I _{CCD}	digital supply current		-	125	-	mA
I _{cco}	output stage supply current		-	1	-	mA
ΔV_{CC}	supply voltage difference					
	V _{CCA} to V _{CCD}		-100	-	+100	mV
	V _{CCO} to V _{CCD}		-165	-	+165	mV
	V _{CCA} to V _{CCO}		-165	-	+165	mV
P _{tot}	total power dissipation		-	1.0	1.3	W
Р	power dissipation	Power-down mode	-	10	-	mW
		Standby mode	-	120	-	mW
R, G and B	amplifiers					
RGB inputs:	pins RIN1, GIN1, BIN1, RIN2, GI	N2 and BIN2				
V _{i(p-p)}	input voltage range (peak-to-peak value)		0.5	-	1.0	V
l _i	input current		-40	-	+40	μΑ
C _i	input capacitance		-	3	-	pF
R _i	input resistance		50	-	-	kΩ
Amplifiers						
В	bandwidth	-3 dB; $T_{amb} = 25$ °C	-	700	-	MHz
G _c	coarse gain	minimum coarse gain; code = 32	-	0	-	dB
		maximum coarse gain; code = 95	-	6	-	dB
ΔG/ΔΤ	amplifier gain stability variation with temperature	minimum coarse gain; code = 32	-	2	-	%

Triple 8-bit video ADC up to 270 Msample/s

Table 75. Characteristics ... continued $T_{amb} = 25 \,^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
G _{E(rms)}	full-scale channel-to-channel matching (RMS value)	minimum coarse gain; code = 32	-	-	2.5	%
R, G and B	clamp					
N _{clamp}	clamp level accuracy	$f_{CLK} = 25 \text{ MHz}$; clamp code = 20	-	-	1	bit
Phase-Lock	ced Loop (PLL); see Table 76					
J _{PLL(p-p)}	long term PLL phase jitter (peak-to-peak value)	f _{clk} = 270 MHz; DR = 2160	-	390	480	ps
DR	divider ratio		100	-	4095	
f _{PLL}	output clock frequency		10	-	270	MHz
f _{ref}	reference clock frequency		15	-	150	kHz
$\Delta \phi_{\sf step}$	number of phase shift steps from drift		-	-	2	
φ _{step}	phase shift step		-	11.25	-	deg
Analog-to-I	Digital Converters (ADCs); min	imum coarse gain				
f _{s(max)}	maximum sampling frequency		270	-	-	MHz
INL	integral non-linearity	$f_{clk} = 270 \text{ MHz}; f_i = 10 \text{ MHz}$	-	±0.6	±1.3	bit
DNL	differential non-linearity	$f_{clk} = 270 \text{ MHz}; f_i = 10 \text{ MHz}$	-	±0.25	±0.6	bit
ENOB	effective number of bits	$f_{clk} = 270 \text{ MHz}; f_i = 10 \text{ MHz}$	-	7.6	-	bit
α_{ct}	crosstalk	f _{clk} = 270 MHz	-	-	-45	dB
S/N	signal-to-noise ratio	$f_{clk} = 270 \text{ MHz}; f_i = 10 \text{ MHz}$	-	48	-	dB
SFDR	spurious free dynamic range	$f_{clk} = 270 \text{ MHz}; f_i = 10 \text{ MHz}$	48	55	-	dB
THD	total harmonic distortion	$f_{clk} = 270 \text{ MHz}; f_i = 10 \text{ MHz}$	-	-55	-48	dB
Data timing	; 10 pF load; see <u>Figure 4</u>					
t _{d(o)}	output delay		-	4	5.2	ns
t _{h(o)}	output hold time		1.9	-	-	ns
t _{su(o)}	output setup time		-	-	6	ns
LV-TTL digi	tal inputs and outputs					
Input pins C	KEXT, COAST, VSYNC1, VSYN	C2, HSYNC1, HSYNC2, CHSYNC	C1, CHSYN	C2, PWD, A	0, DIS, TC	K and CL
V _{IL}	LOW-level input voltage		0	-	0.8	V
V _{IH}	HIGH-level input voltage		2.0	-	V _{CCD(TT}	L) V
	RA[7:0], RB[7:0], GA[7:0], GB[7: IELDO, CLPO, CKREFO and CS	0], BA[7:0], BB[7:0], ROR, BOR, G SYNCO	OR, CKDA	TA, TDO, DE	O, HPDO,	HSYNCC
V _{OL}	LOW-level output voltage	I _{OH} = 1 mA	-	-	0.4	V
V _{OH}	HIGH-level output voltage	$I_{OL} = -1 \text{ mA}$	2.4	-	-	V
Data clock	output					
Output pin C	CKDATA					
f _{CKDATA(max)}	maximum buffer frequency		-	140	-	MHz
Data outpu	ts					
Output pins	RA[7:0], RB[7:0], GA[7:0], GB[7:	0], BA[7:0], BB[7:0], ROR, BOR,	GOR, DEO,	HSYNCO a	nd CSYNC	O
data(max)	maximum buffer frequency		_	70	_	MHz

Triple 8-bit video ADC up to 270 Msample/s

Table 75. Characteristics ...continued $T_{amb} = 25 \,^{\circ}C$ unless otherwise specified.

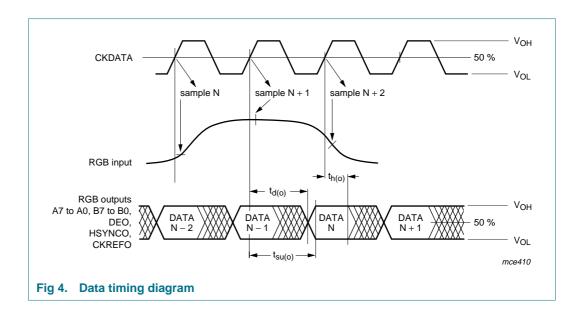
Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
Hsync input	S					
Input pins HS	SYNC1, HSYNC2, CHSYNC1 and	d CHSYNC2				
t _{W(Hsync)(min)}	minimum pulse width		250	-	-	ns
t _{W(Hsync)(max)}	maximum pulse width	in % of total horizontal line	-	-	20	%
SOG inputs						
Input pins SC	OGIN1 and SOGIN2					
V _{sync(G)}	sync-on-green pulse amplitude		150	-	-	mV
$V_{\text{sync}(G)}$	high/low differential amplitude of 3-level pulse		-	-	20	%
² C-bus (fast	t mode; 5 V tolerant)					
Pins SCL and	d SDA					
f _{SCL}	clock frequency		-	-	400	kHz
V _{IL}	LOW-level input voltage		0	-	0.8	V
V _{IH}	HIGH-level input voltage		2.0	-	5.5	V
C _b	capacitive load		-	-	400	pF

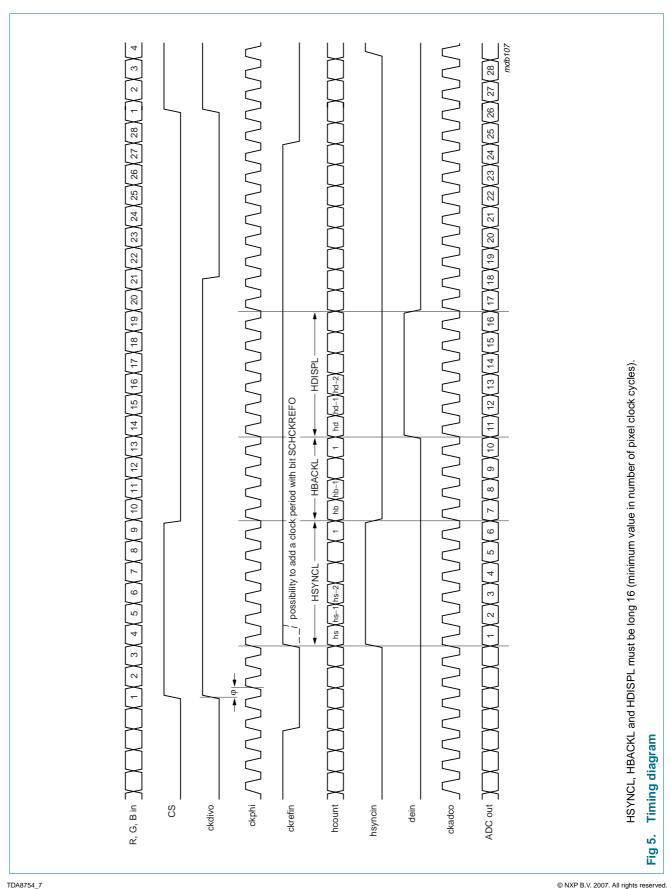
^[1] Typical values are measured at $V_{CCA} = V_{CCA(SOG)}$ to GNDA(SOG) or $V_{CCA(R)}$ to GNDA(R) or $V_{CCA(G)}$ to GNDA(G) or $V_{CCA(B)}$ to GNDA(B) = 3.3 V; $V_{CCD} = V_{CCD(TTL)}$ to GNDD(TTL) or $V_{CCD(ADC)}$ to GNDD(ADC) or $V_{CCD(I2C)}$ to GNDD(I2C) or $V_{CCD(MCF)}$ to GNDD(MCF) or $V_{CCD(TTL)}$ to GNDD(TTL) or $V_{CCD(SLC)}$ to GNDD(SLC) = 3.3 V; $V_{CCO} = V_{CCO(BB)}$ to GNDO(BB) or $V_{CCO(BA)}$ to GNDO(BA) or $V_{CCO(CB)}$ to GNDO(GB) or $V_{CCO(CB)}$ to GNDO(CLK) = 3.3 V.

Table 76. Examples of PLL settings and performance

 $V_{CCA} = V_{CCD} = V_{CCO} = 3.3 \text{ V; } T_{amb} = 25 \,^{\circ} C_{col}^{[1]}.$

Video standard	f _{ref} (kHz)	f_{Clk} DR Ko C_z (nF) C_P (pF) I_P (MHz) (MHz/V)		I_P (μΑ)	Z (Ω)	Long-ter	ong-term time			
									RMS (ps)	p-p (ps)
VGA 60 Hz; VESA: 640 × 480	31.469	25.175	800	30	220	680	1200	510	500	3000
SVGA 72 Hz; VESA: 800 × 600	48.08	50	1040	60	220	680	1200	510	370	1980
XGA 75 Hz; VESA: 1024 × 768	60.02	78.75	1312	60	220	680	1600	640	220	1320
SXGA 60 Hz; VESA: 1280 × 1024	63.98	108	1688	105	220	680	1600	510	185	1110
SXGA 75 Hz; VESA: 1280 × 1024	80.00	135	1688	105	220	680	1600	640	145	870
UXGA 60 Hz; VESA: 1600 × 1200	75.00	162	2160	105	220	680	2000	640	135	810
UXGA 75 Hz; VESA: 1600 × 1200	93.75	202.5	2160	135	220	680	1600	800	95	570
UXGA 85 Hz; VESA: 1600 × 1200	106.25	229.5	2160	135	220	680	2000	640	85	510

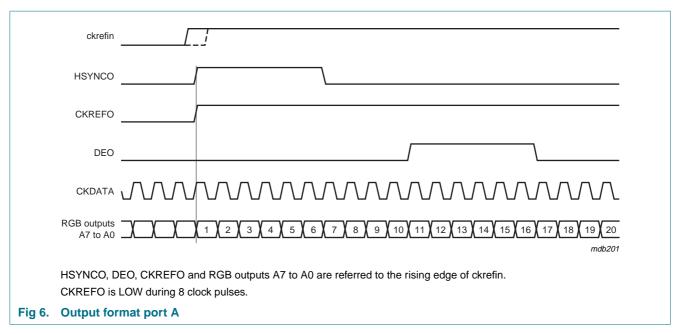

^[1] PLL long-term time jitter is measured at the end of the video line, where it is at its maximum.

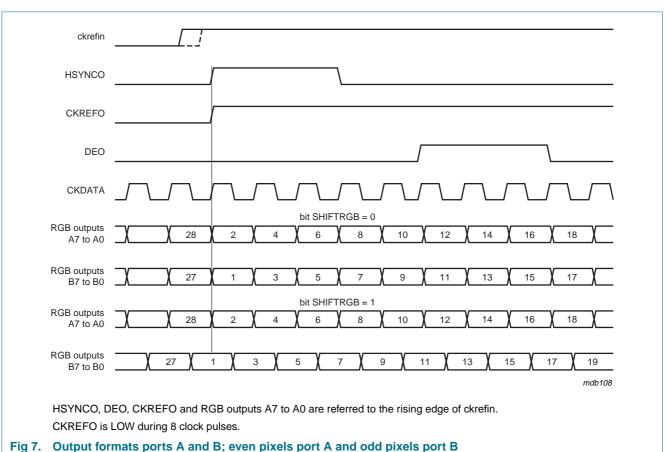

TDA8754_7 © NXP B.V. 2007. All rights reserved.

Triple 8-bit video ADC up to 270 Msample/s

45 of 57

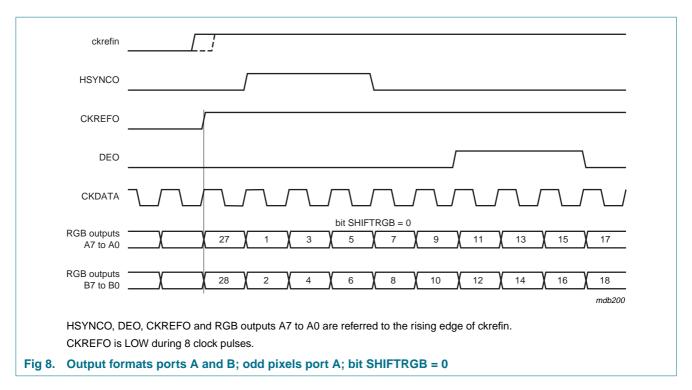
13. Timing

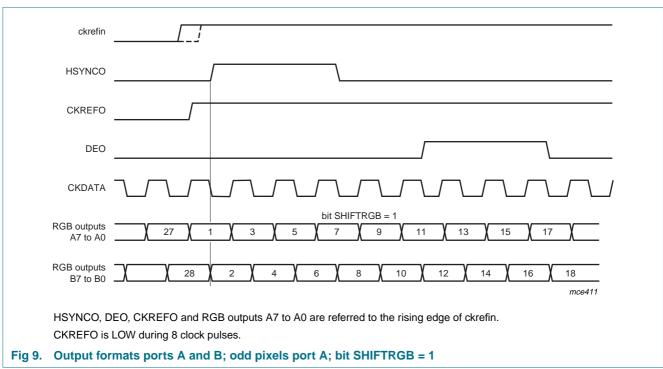




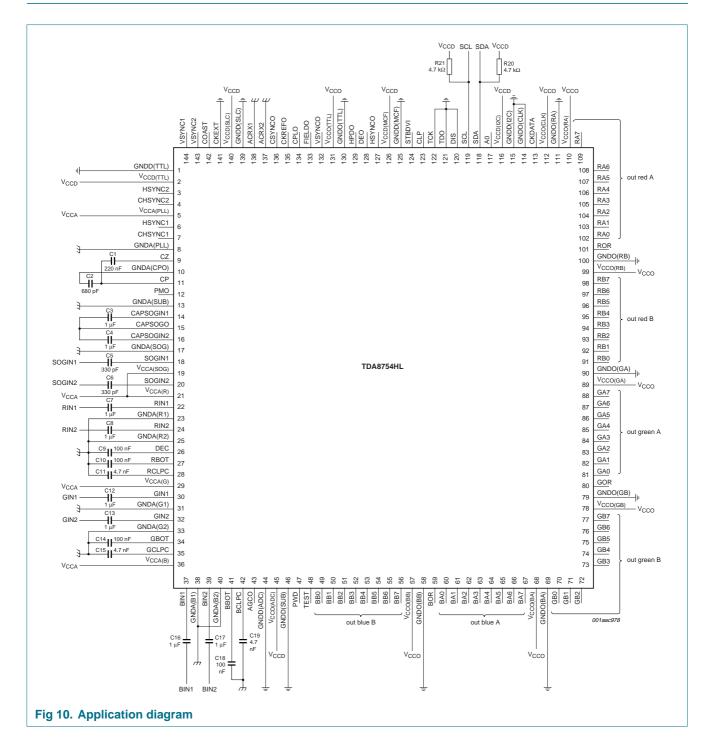
 TDA8754_7
 © NXP B.V. 2007. All rights reserved.

 Product data sheet
 Rev. 07 — 3 May 2007
 46 of 57


Triple 8-bit video ADC up to 270 Msample/s



TDA8754_7 © NXP B.V. 2007. All rights reserved.


Triple 8-bit video ADC up to 270 Msample/s

Triple 8-bit video ADC up to 270 Msample/s

14. Application information

Product data sheet

49 of 57

Triple 8-bit video ADC up to 270 Msample/s

15. Package outline

LQFP144: plastic low profile quad flat package; 144 leads; body 20 x 20 x 1.4 mm

SOT486-1

50 of 57

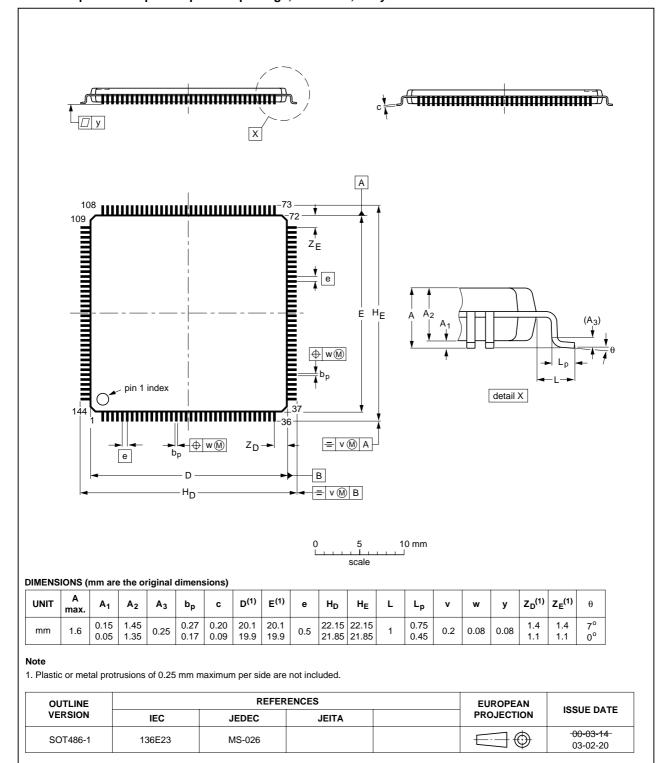


Fig 11. Package outline SOT486-1 (LQFP144)

© NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

51 of 57

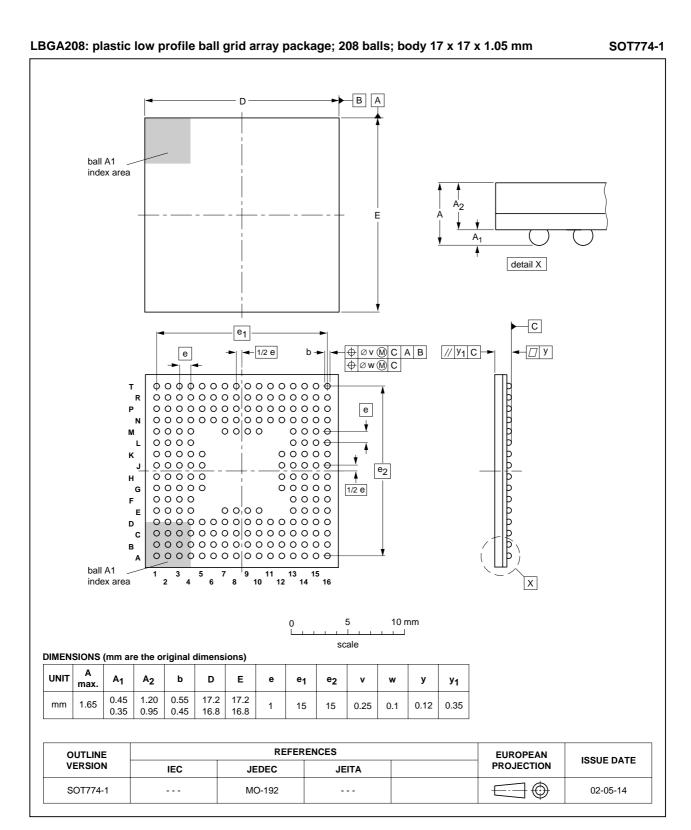


Fig 12. Package outline SOT774-1 (LBGA208)

TDA8754 7 © NXP B.V. 2007. All rights reserved. Rev. 07 — 3 May 2007

Triple 8-bit video ADC up to 270 Msample/s

16. Soldering

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

16.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

16.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus PbSn soldering

16.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

TDA8754_7 © NXP B.V. 2007. All rights reserved.

Triple 8-bit video ADC up to 270 Msample/s

53 of 57

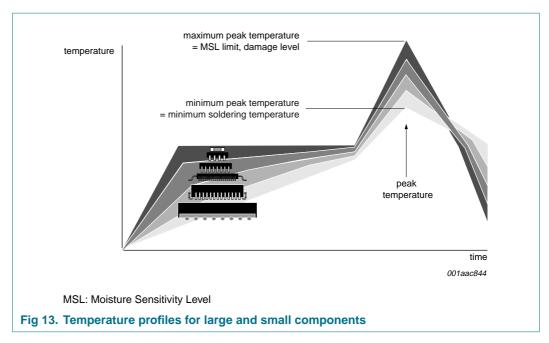
16.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see Figure 13) than a PbSn process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with **Table 77 and 78**

Table 77. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)					
	Volume (mm³)					
	< 350	≥ 350				
< 2.5	235	220				
≥ 2.5	220	220				


Table 78. Lead-free process (from J-STD-020C)

Package thickness (mm)	kage thickness (mm) Package reflow temperature (°C) Volume (mm³)					
	< 350	350 to 2000	> 2000			
< 1.6	260	260	260			
1.6 to 2.5	260	250	245			
> 2.5	250 245 245					

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 13.

Triple 8-bit video ADC up to 270 Msample/s

For further information on temperature profiles, refer to Application Note AN10365 "Surface mount reflow soldering description".

Product data sheet

54 of 57

Triple 8-bit video ADC up to 270 Msample/s

55 of 57

17. Revision history

Table 79. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
TDA8754_7	20070503	Product data sheet	- TDA8754_6			
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP semiconductors. 					
	 Legal texts have been adapted to the new company name where appropriate. 					
	 Section 8.2.4: added remark on clamp noise 					
TDA8754_6 (9397 750 14984)	20050616	Product data sheet	-	TDA8754_5		
TDA8754_5 (9397 750 13199)	20040518	Product specification	-	TDA8754_4		
TDA8754_4 (9397 750 12016)	20030930	Preliminary specification	-	TDA8754_3		
TDA8754_3 (9397 750 11551)	20030716	Objective specification	-	TDA8754_2		
TDA8754_2 (9397 750 10598)	20030417	Objective specification	-	TDA8754_1		
TDA8754_1 (9397 750 04134)	19980930	Objective specification	-	-		

Triple 8-bit video ADC up to 270 Msample/s

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

18.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to

result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

19. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

DA8754_7 © NXP B.V. 2007. All rights reserved.

Triple 8-bit video ADC up to 270 Msample/s

20. Contents

1	General description	1	9.16	Output register	34
2	Features	1	9.17	Output enable register 1	
3	Applications	2	9.18	Output enable register 2	
4	Quick reference data		9.19	Clock output register	
			9.20	Internal oscillator register	
5	Ordering information		9.21	Power management register	
6	Block diagram		9.22	Read register	
7	Pinning information		9.23	Version register	
7.1	Pinning	4	9.24	Sign detection register	
7.2	Pin description	4	9.25	Activity detection 1 register	
8	Functional description	13	9.26	Activity detection register 2	
8.1	Functional description	13	10	Limiting values	
8.1.1	Power management	13	11	Thermal characteristics	42
8.1.1.1	Standby mode	13	12	Characteristics	42
8.1.1.2	Power-down mode	14	13	Timing	45
8.2	Analog video input		14	Application information	
8.2.1	Analog multiplexers		15	Package outline	
8.2.2	Activity detection		_		
8.2.3	ADC		16	Soldering	
8.2.4	Clamp		16.1	Introduction to soldering	
8.2.5	AGC		16.2	Wave and reflow soldering	
8.3	HSOSEL, DEO and SCHCKREFO		16.3	Wave soldering	
8.4	PLL		16.4	Reflow soldering	
8.5	Sync-on-green		17	Revision history	55
8.6	Programmable coast		18	Legal information	56
8.7	Data enable		18.1	Data sheet status	56
8.8	Sync separator		18.2	Definitions	56
8.9	3-level		18.3	Disclaimers	56
9	I ² C-bus register description		18.4	Trademarks	56
9.1	I ² C-bus formats		19	Contact information	56
9.1.1	Write 1 register		20	Contents	57
9.1.2	Write all registers				
9.1.2.1	Read register				
9.2	I ² C-bus registers overview				
9.3	Offset registers (R, G and B)				
9.4	Coarse registers (R, G and B)				
9.5	Fine registers (R, G and B)				
9.6	Sync-on-green register				
9.7	PLL control register				
9.8	Phase register				
9.9	PLL divider registers				
9.10	Horizontal sync registers				
9.11	Coast register				
9.12	Horizontal sync selection register				
9.13	Vertical sync selection register				
9.14	Clamp register				
9 15	Inverter register	33			

PHILIPS

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 3 May 2007 Document identifier: TDA8754_7