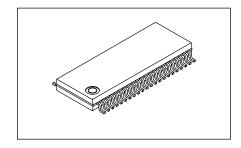
Bi-CMOS IC

PWM Constant-Current Control Stepper Motor Driver

http://onsemi.com


Overview

The LV8729V is a PWM current-controlled microstep bipolar stepper motor driver.

This driver can perform eight times of excitation of the second phase to 32W1-second phase and can drive simply by the CLK input.

Function

- Single-channel PWM current control stepper motor driver.
- BiCDMOS process IC.
- Output on-resistance (upper side : 0.35Ω ; lower side : 0.3Ω ; total of upper and lower : 0.65Ω ; Ta = 25° C, IO = 1.8A)
- 2-phase, 1-2 phase, W1-2 phase, 2W1-2 phase, 4W1-2 phase, 8W1-2 phase, 16W1-2 phase, 32W1-2 phase excitation are selectable.
- Advance the excitation step with the only step signal input.
- Available forward reverse control.
- Over current protection circuit.
- Thermal shutdown circuit.
- Input pull down resistance
- With reset pin and enable pin.

SSOP44K (275mil)

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	VM max	VM , VM1 , VM2	36	V
Maximum output current	I _O max	Per 1ch	1.8	Α
Maximum logic input voltage	V _{IN} max	ST, MD1, MD2, MD3, OE, RST, FR,	6	V
Maximum VREF input voltage	VREF max		6	V
Maximum MO input voltage	V _{MO} max		6	V
Maximum DOWN input voltage	V _{DOWN} max		6	V
Allowable power dissipation	Pd max	*	3.85	W
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

 $^{^{\}star} \ \text{Specified circuit board} : 90.0 \text{mm} \times 90.0 \text{mm} \times 1.6 \text{mm}, \ \text{glass epoxy 2-layer board}, \ \text{with backside mounting}.$

Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ORDERING INFORMATION

See detailed ordering and shipping information on page 21 of this data sheet.

Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

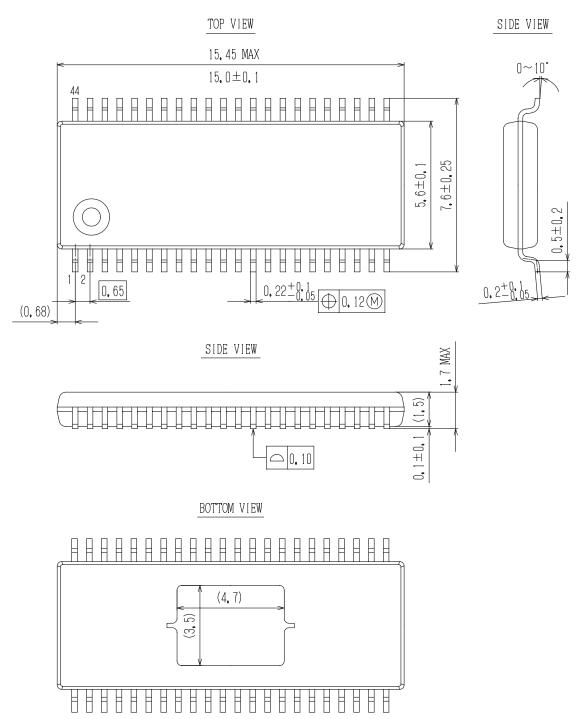
Allowable Operating Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	VM	VM , VM1 , VM2	9 to 32	V
Logic input voltage	V _{IN}	ST , MD1 , MD2 , MD3 , OE , RST , FR , STEP	0 to 5	V
VREF input voltage range	VREF		0 to 3	V

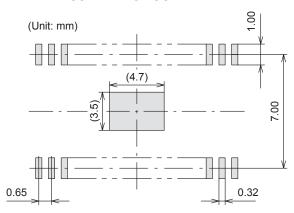
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics at Ta = 25°C, VM = 24V, VREF = 1.5V

Daramat	· ·	Cumbal	Conditions		Ratings		Unit
Paramet	lei	Symbol	Conditions	min	typ	max	Offic
Standby mode currer	nt drain	I _M st	ST = "L" , VM+VM1+VM2		70	100	μА
Current drain		IM	ST = "H", OE = "H", no load VM+VM1+VM2		3.3	4.6	mA
Thermal shutdown to	emperature	TSD	Design guarantee	150	180	200	°C
Thermal hysteresis v	In the drain IM ST = "H", OE = "H", no lo VM+VM1+VM2 In al shutdown temperature TSD Design guarantee In al hysteresis width Design guarantee In al hysteresis width Design guarantee In a spin input current In a strength of the spin input current Input current Input current Input current Input current Input current Input voltage Input		Design guarantee		40		°C
Logic pin input curre	nt	I _{IN} L	ST , MD1 , MD2 , MD3 , OE , RST , FR , STEP , V _{IN} = 0.8V	3	8	15	μА
		I _{IN} H	ST , MD1 , MD2 , MD3 , OE , RST , FR , STEP , V _{IN} = 5V	30	50	70	μА
Logic input voltage	High	V _{IN} H	ST, MD1, MD2, MD3, OE, RST, FR,	2.0		5.0	V
	Low	V _{IN} L	STEP	0		8.0	V
Chopping frequency		Fch	Cosc1 = 100pF	70	100	130	kHz
OSC1 pin charge/dis	charge current	losc1		7	10	13	μΑ
Chopping oscillation	circuit	Vtup1		0.8	1	1.2	V
threshold voltage		Vtdown1		0.3	0.5	0.7	٧
VREF pin input volta	ge	Iref	VREF = 1.5V	-0.5			μА
DOWN output residu	al voltagr	V _O 1DOWN	Idown = 1mA		40	100	mV
MO pin residual volta	ige	V _O 1MO	Imo = 1mA		40	100	mV
Hold current switchin	g frequency	Fdown	Cosc2 = 1500pF	1.12	1.6	2.08	Hz
Hold current switchin	g frequency	Vtup2		0.8	1	1.2	٧
threshold voltage		Vtdown2		0.3	0.5	0.7	٧
VREG1 output voltage	је	Vreg1		4.7	5	5.3	V
VREG2 output voltage	је	Vreg2	V _M	18	19	20	٧
Output on-resistance		Ronu	I _O = 1.8A, high-side ON resistance		0.35	0.455	Ω
		Rond	I _O = 1.8A, low-side ON resistance		0.3	0.39	Ω
Output leakage curre	ent	l _O leak	V _M = 36V			50	μА
Diode forward voltag	e	VD	I _D = -1.8A		1	1.4	٧
Current setting refere	ence voltage	VRF	VREF = 1.5V, Current ratio 100%	0.285	0.3	0.315	٧


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

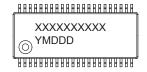
Package Dimensions


unit: mm (typ)

SSOP44K (275mil) Exposed Pad

CASE 940ÅF ISSUE A

SOLDERING FOOTPRINT*

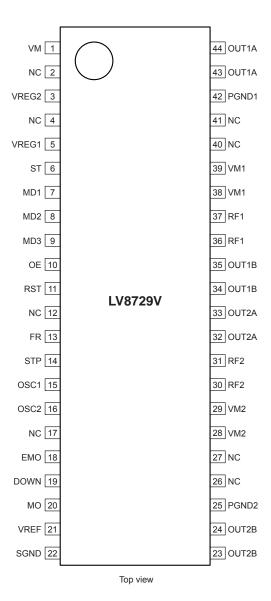


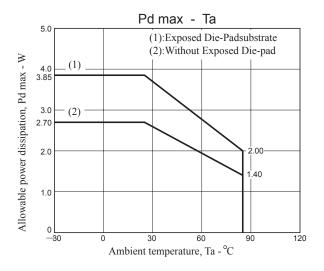
NOTES:

- 1. The measurements are for reference only, and unable to guarantee.
- 2. Please take appropriate action to design the actual Exposed Die Pad and Fin portion.
- 3. After setting, verification on the product must be done.

 (Although there are no recommended design for Exposed Die Pad and Fin portion Metal mask and shape for Through–Hole pitch (Pitch & Via etc), checking the soldered joint condition and reliability verification of soldered joint will be needed. Void gradient insufficient thickness of soldered joint or bond degradation could lead IC destruction because thermal conduction to substrate becomes poor.)

GENERIC MARKING DIAGRAM*

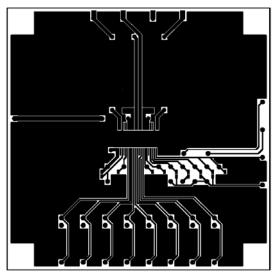



XXXXX = Specific Device Code Y = Year M = Month DDD = Additional Traceability Data

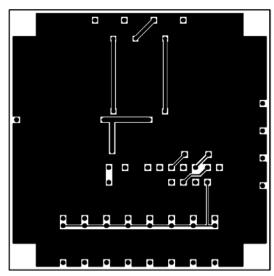
^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "■", may or may not be present.

Pin Assignment



Substrate Specifications (Substrate recommended for operation of LV8729V)


Size : $90\text{mm} \times 90\text{mm} \times 1.6\text{mm}$ (two-layer substrate [2S0P])

Material : Glass epoxy

Copper wiring density : L1 = 85% / L2 = 90%

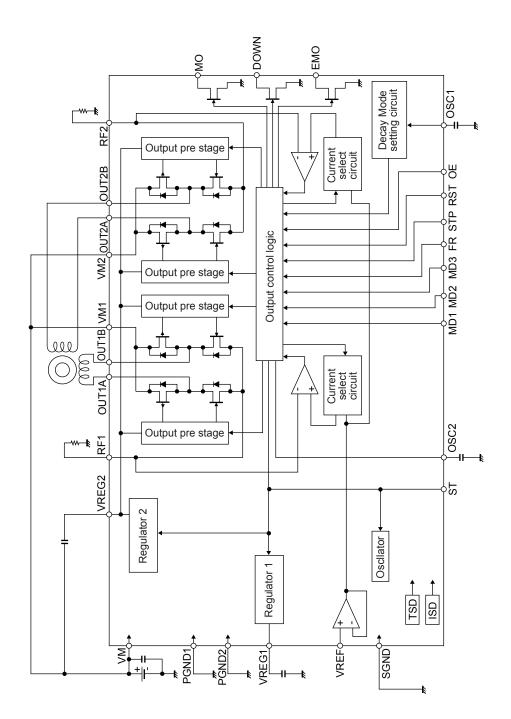
L1: Copper wiring pattern diagram

L2: Copper wiring pattern diagram

Cautions

- 1) The data for the case with the Exposed Die-Pad substrate mounted shows the values when 90% or more of the Exposed Die-Pad is wet.
- 2) For the set design, employ the derating design with sufficient margin.
 - Stresses to be derated include the voltage, current, junction temperature, power loss, and mechanical stresses such as vibration, impact, and tension.

Accordingly, the design must ensure these stresses to be as low or small as possible.


The guideline for ordinary derating is shown below:

- (1)Maximum value 80% or less for the voltage rating
- (2)Maximum value 80% or less for the current rating
- (3)Maximum value 80% or less for the temperature rating
- 3) After the set design, be sure to verify the design with the actual product.

Confirm the solder joint state and verify also the reliability of solder joint for the Exposed Die-Pad, etc. Any void or deterioration, if observed in the solder joint of these parts, causes deteriorated thermal conduction,

possibly resulting in thermal destruction of IC.

Block Diagram

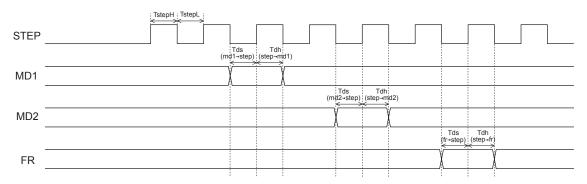
Pin Functions

PIN F	unctions		
Pin No.	Pin Name	Pin Functtion	Equivalent Circuit
7	MD1	Excitation mode switching pin	VDEC4.0
8	MD2	Excitation mode switching pin	VREG1 O
9	MD3	Excitation mode switching pin	│
10	OE	Output enable signal input pin	Ĭ I, †
11	RST	Reset signal input pin	★ * * !
13	FR	Forward / Reverse signal input pin	10kΩ
14	STP	Step clock pulse signal input pin	10kΩ \$100kΩ
6	ST	Chip enable pin.	VREG1 \bigcirc $20k\Omega$ $10k\Omega$ $80k\Omega$
23, 24	OUT2B	Channel 2 OUTB output pin.	(38)(39)
25	PGND2	Channel 2 motor power ground	
28, 29 30, 31 32, 33 34, 35 36, 37 38, 39 42 43, 44	VM2 RF2 OUT2A OUT1B RF1 VM1 PGND1 OUT1A	Channel 2 motor power supply connection pin. Channel 2 current-sense resistor connection pin. Channel 2 OUTA output pin. Channel 1 OUTB output pin. Channel 1 current-sense resistor connection pin. Channel 1 motor power supply pin. Channel 1 Power system ground Channel 1 OUTA output pin.	(3)(4) (3)(4) (3)(3) (
21	VREF	Constant-current control reference voltage input pin.	VREG1 O 500Q GND O

Continued on next page.

Continued	from preceding p	page.	
Pin No.	Pin Name	Pin Functtion	Equivalent Circuit
3	VREG2	Internal regulator capacitor connection	VM 0
		pin.	 ξ65kΩ
			_
			\$ 35kΩ
			2kO +
			→
			T
			GND ○ • • • • • • • • • • • • • • • • • •
5	VREG1	Internal regulator capacitor connection	VM O +
		pin.	
			│
			→ → → → → → → → → → → → → → → → → → →
			2κΩ
			ξ78κΩ
			\$26kΩ
			GND ○
			GIAD G
18	EMO	Over-current detection alarm output pin.	VREG1 O-
19 20	DOWN MO	Holding current output pin. Position detecting monitor pin.	*
20	WO	1 ostaon detecting monitor pin.	▼
			<u></u>
			≹ 100kΩ
			GND O
			GND G
15	OSC1	Copping frequency setting capacitor	VREG5 ○ + +
16	OSC2	connection pin.	
16	0302	Holding current detection time setting capacitor connection pin.	
			30002 \$ \$30002
			GND O
			
			<u> </u>
			Ű

Reference describing operation


(1) Stand-by function

When ST pin is at low levels, the IC enters stand-by mode, all logic is reset and output is turned OFF. When ST pin is at high levels, the stand-by mode is released.

(2) STEP pin function

In	out	Operating mode
ST	STP	
Low	*	Standby mode
High		Excitation step proceeds
High	—	Excitation step is kept

(3) Input Timing

TstepH/TstepL: Clock H/L pulse width (min 500ns)

Tds: Data set-up time (min 500ns) Tdh: Data hold time (min 500ns)

(4) Excitation setting method

Set the excitation setting as shown in the following table by setting MD1 pin, MD2 pin and MD3 pin.

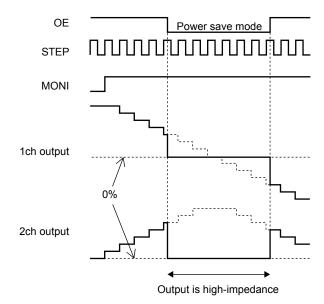
	Input		Mode	Initial p	tial position			
MD3	MD2	MD1	(Excitation)	1ch current	2ch current			
Low	Low	Low	2 phase	100%	-100%			
Low	Low	High	1-2 phase	100%	0%			
Low	High	Low	W1-2 phase	100%	0%			
Low	High	High	2W1-2 phase	100%	0%			
High	Low	Low	4W1-2 phase	100%	0%			
High	Low	High	8W1-2 phase	100%	0%			
High	High	Low	16W1-2 phase	100%	0%			
High	High	High	32W1-2 phase	100%	0%			

The initial position is also the default state at start-up and excitation position at counter-reset in each excitation mode.

(5) Output current setting

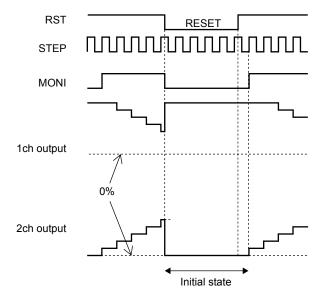
Output current is set shown below by the VREF pin (applied voltage) and a resistance value between RF1(2) pin and GND.

$$I_{OUT} = (VREF / 5) / RF1 (2) resistance$$

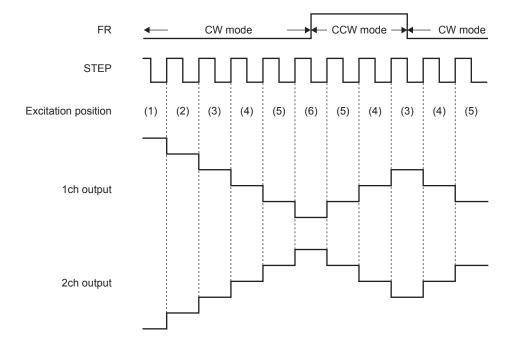

* The setting value above is a 100% output current in each excitation mode.

(Example) When VREF = 1.1V and RF1 (2) resistance is 0.22Ω , the setting is shown below.

$$I_{OUT} = (1.1V / 5) / 0.22\Omega = 1.0A$$


(6) Output enable function

When the OE pin is set Low, the output is forced OFF and goes to high impedance. However, the internal logic circuits are operating, so the excitation position proceeds when the STP is input. Therefore, when OE pin is returned to High, the output level conforms to the excitation position proceeded by the STP input.


(7) Reset function

When the RST pin is set Low, the output goes to initial mode and excitation position is fixed in the initial position for STP pin and FR pin input. MO pin outputs at low levels at the initial position. (Open drain connection)

(8) Forward / reverse switching function

FR	Operating mode
Low	Clockwise (CW)
High	Counter-clockwise (CCW)

The internal D/A converter proceeds by a bit on the rising edge of the step signal input to the STP pin. In addition, CW and CCW mode are switched by FR pin setting.

In CW mode, the channel 2 current phase is delayed by 90° relative to the channel 1 current.

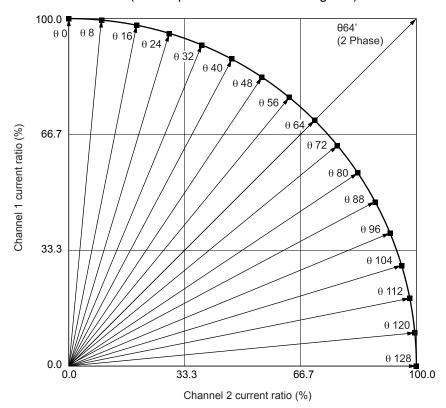
In CCW mode, the channel 2 current phase is advanced by 90° relative to the channel 1 current.

(9) EMO, DOWN, MO output pin

The output pin is open -drain connection. When it becomes prescribed, it turns on, and each pin outputs the Low level.

Pin state	ЕМО	DOWN	MO
Low	At detection of over-current	Holding current state	Initial position
OFF	Normal state	Normal state	Non initial position

(10) Chopping frequency setting function


Chopping frequency is set as shown below by a capacitor between OSC1 pin and GND.

Fcp =
$$1 / (Cosc1 / 10 \times 10^{-6})$$
 (Hz)

(Example) When Cosc1 = 200pF, the chopping frequency is shown below.

Fcp =
$$1 / (200 \times 10^{-12} / 10 \times 10^{-6}) = 50(kHz)$$

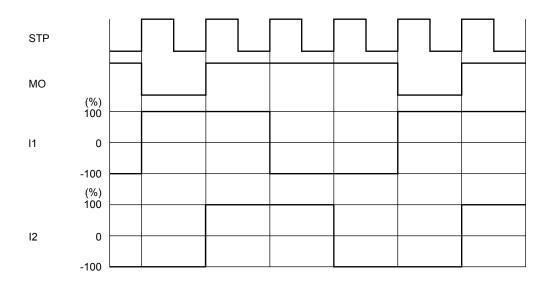
(11) Output current vector locus (one step is normalized to 90 degrees)

Current setting ratio in each excitation mode

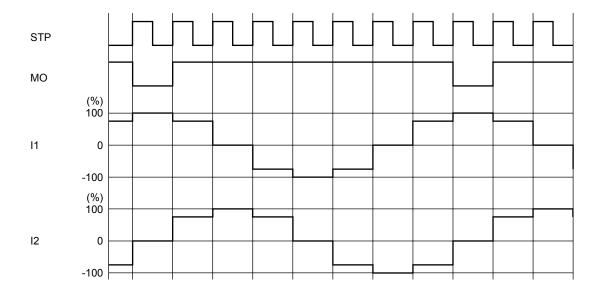
	SIIL SCL	ing ratio	<u> </u>	on oxon	auom	11000										
STEP	32W1-2	phase(%)	16W1-2	phase(%)	8W1-2 p	hase(%)	4W1-2 p	hase(%)	2W1-2 p	hase (%)	W1-2 pl	nase (%)	1-2 pha	ase (%)	2 pha	se (%)
SILI	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch
θ0	100	0	100	0	100	0	100	0	100	0	100	0	100	0		
θ1	100	1														
θ2	100	2	100	2												
θ3	100	4														
θ4	100	5	100	5	100	5										
θ5	100	6														
θ6	100	7	100	7												
θ7	100	9														
θ8	100	10	100	10	100	10	100	10								
θ9	99	11														
θ10	99	12	99	12												
θ11	99	13														
θ12	99	15	99	15	99	15										
θ13	99	16														
θ14	99	17	99	17												
θ15	98	18														
θ16	98	20	98	20	98	20	98	20	98	20						
θ17	98	21														
θ18	98	22	98	22												
θ19	97	23														
θ20	97	24	97	24	97	24										
θ21	97	25														
θ22	96	27	96	27												
θ23	96	28														
θ24	96	29	96	29	96	29	96	29								i
θ25	95	30														

Continued on next page.

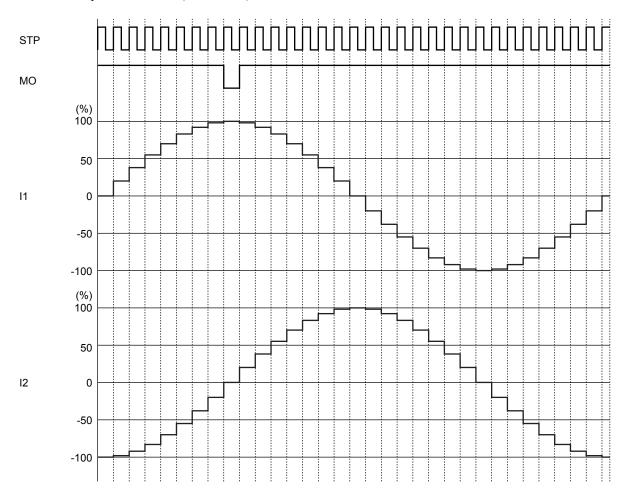
Continued from preceding page.

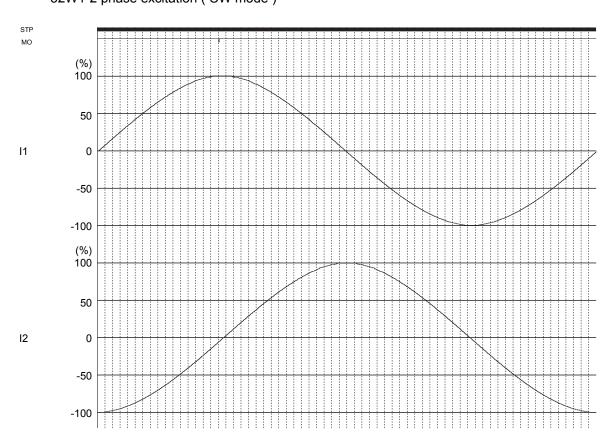

STEP		2 phase		2 phase		2 phase		2 phase		2 phase		nase (%)		ase (%)		se (%)
	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1 ch	2ch	1ch	2ch	1ch	2ch
θ26	95	31	95	31												
θ27	95	33														
θ28	94	34	94	34	94	34		<u> </u>	<u> </u>							<u> </u>
θ29	94	35														
θ30	93	36	93	36												
θ31	93	37														
θ32	92	38	92	38	92	38	92	38	92	38	92	38				
θ33	92	39														
θ34	91	41	91	41												
θ35	91	42														
θ36	90	43	90	43	90	43										
θ37	90	44														
θ38	89	45	89	45												
θ39	89	46														
θ40	88	47	88	47	88	47	88	47								
θ41	88	48														
θ42	87	49	87	49												
θ43	86	50							ļ							
θ44	86	51	86	51	86	51		<u> </u>	<u> </u>		1					
045	85	52						-								
θ46	84	53	84	53				-	<u> </u>		-					
θ47	84	55				<u> </u>		<u> </u>	<u> </u>							
θ48	83	56	83	56	83	56	83	56	83	56	-					
θ49	82	57						-	<u> </u>		-					
θ50	82	58	82	58												
θ51	81	59	0		0.7				-							
θ52	80	60	80	60	80	60										
θ53	80	61							-							
θ54	79	62	79	62					-							
θ55	78	62							-							
θ56	77	63	77	63	77	63	77	63	 					1		
θ57	77	64						1	1		1					
θ58	76	65	76	65				1	1		1					
θ59	75	66	74	67	74	67		-	-		-					<u> </u>
θ60	74	67	74	67	74	67			 							
θ61	73	68	70				-		1	-						
θ62	72	69	72	69					 							
θ63	72	70	71	71	7.	71	71				71	7.	71	7.	100	100
θ64	71	71	71	71	71	71	71	71	71	71	71	71	71	71	100	100
θ65	70	72	<i>(</i> 0	70					 							
θ66	69	72	69	72				-	-		-					<u> </u>
θ67	68	73	67	7.4	67	7.4		-	-		-					-
θ68	67	74	67	74	67	74		-	-		-					<u> </u>
070	66	75 76	(5	77					-							-
θ70	65	76	65	76		-	-		-							
θ71	64	77	62	77	62	77	62	77	-							
θ72	63	77	63	77	63	77	63	77	-							
θ73	62	78 79	62	70					-							
074	62	80	62	79				1	 		1					
θ75	61		60	90	60	90		1	 		1					
θ76	50	80	60	80	60	80		1	 		1					
077	59	81	50	92				1	 		1					
θ78 970	58	82	58	82				1	 		1					
θ79	57	82	57	02	57	92	51	02	51	02						
θ80	56	83	56	83	56	83	56	83	56	83						
θ81	55	84	50	0.4				1	 							
θ82	53	84	53	84					 							
θ83	52	85		6.5		6.5			 					1		
θ84	51	86	51	86	51	86			 					1		
θ85	50	86							-							
θ86	49	87	49	87					 							
θ87	48	88							 							
θ88	47	88	47	88	47	88	47	88	ļ							
	16	89	Ī	I	Ì	1	Ī	1	1	Ì	1			ĺ		
θ89 θ90	46 45	89	45	89												

Continued on next page.

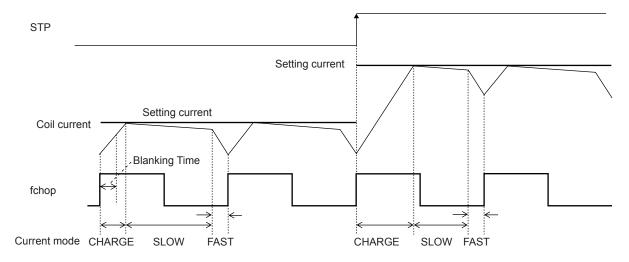

Continued from preceding page.

	32W1-	2 phase	16W1-	2 phase	8W1-2	2 phase	4W1-2	2 phase	2W1-2	2 phase	W1-2 pl	nase (%)	1-2 ph	ase (%)	2 pha	se (%)
STEP	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1 ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch
θ91	44	90														
θ92	43	90	43	90	43	90										
θ93	42	91														
θ94	41	91	41	91												1
θ95	39	92														
θ96	38	92	38	92	38	92	38	92	38	92	38	92				
θ97	37	93														
θ98	36	93	36	93												
θ99	35	94														
θ100	34	94	34	94	34	94										
θ101	33	95														
θ102	31	95	31	95												
θ103	30	95														
θ104	29	96	29	96	29	96	29	96								
θ105	28	96														
θ106	27	96	27	96												
θ107	25	97														
θ108	24	97	24	97	24	97										
θ109	23	97														
θ110	22	98	22	98												
θ111	21	98														
θ112	20	98	20	98	20	98	20	98	20	98						
θ113	18	98														
θ114	17	99	17	99												
θ115	16	99														
θ116	15	99	15	99	15	99										
θ117	13	99														
θ118	12	99	12	99												
θ119	11	99														
θ120	10	100	10	100	10	100	10	100								
θ121	9	100														
θ122	7	100	7	100												
θ123	6	100														
θ124	5	100	5	100	5	100										
θ125	4	100														
θ126	2	100	2	100												
θ127	1	100														
θ128	0	100	0	100	0	100	0	100	0	100	0	100	0	100		

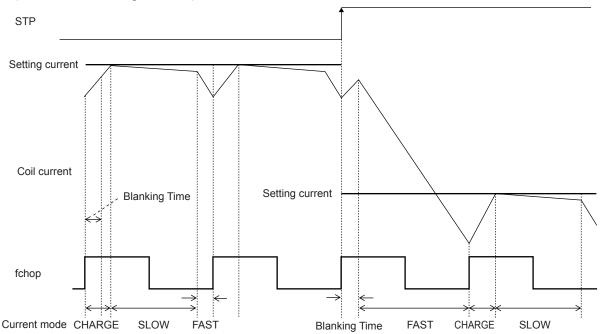

(12) Current wave example in each excitation mode (2 phase, 1-2 phase, 4W1-2 phase, 32W1-2 phase) 2-phase excitation (CW mode)


1-2 phase excitation (CW mode)

4W1-2 phase excitation (CW mode)



32W1-2 phase excitation (CW mode)



(13) Current control operation

(Sine-wave increasing direction)

(Sine-wave decreasing direction)

Each of current modes operates with the follow sequence.

- \cdot The IC enters CHARGE mode at a rising edge of the chopping oscillation. (A period of CHARGE mode (Blanking Time) is forcibly present in approximately 1 μ s, regardless of the current value of the coil current (ICOIL) and set current (IREF)).
- · In a period of Blanking Time, the coil current (ICOIL) and the setting current (IREF) are compared.

If an ICOIL < IREF state exists during the charge period:

The IC operates in CHARGE mode until ICOIL \geq IREF. After that, it switches to SLOW DECAY mode and then switches to FAST DECAY mode in the last approximately 1 μ s of the period.

If no ICOIL < IREF state exists during the charge period:

The IC switches to FAST DECAY mode and the coil current is attenuated with the FAST DECAY operation until the end of a chopping period.

The above operation is repeated. Normally, in the sine wave increasing direction the IC operates in SLOW (+ FAST) DECAY mode, and in the sine wave decresing direction the IC operates in FAST DECAY mode until the current is attenuated and reaches the set value and the IC operates in SLOW (+ FAST) DECAY mode.

(14) Output short-circuit protection circuit

Built-in output short-circuit protection circuit makes output to enter in stand-by mode. This function prevents the IC from damaging when the output shorts circuit by a voltage short or a ground short, etc. When output short state is detected, short-circuit detection circuit state the operating and output is once turned OFF. Subsequently, the output is turned ON again after the timer latch period (typ. 256µs). If the output remains in the short-circuit state, turn OFF the output, fix the output to the wait mode, and turn ON the EMO output.

When output is fixed in stand-by mode by output short protection circuit, output is released the latch by setting ST = "L".

(15) Open-drain pin for switching holding current

The output pin is an open-drain connection.

This pin is turned ON when no rising edge of STP between the input signals while a period determined by a capacitor between OSC2 and GND, and outputs at low levels.

The open-drain output in once turned ON, is turned OFF at the next rising edge of STP.

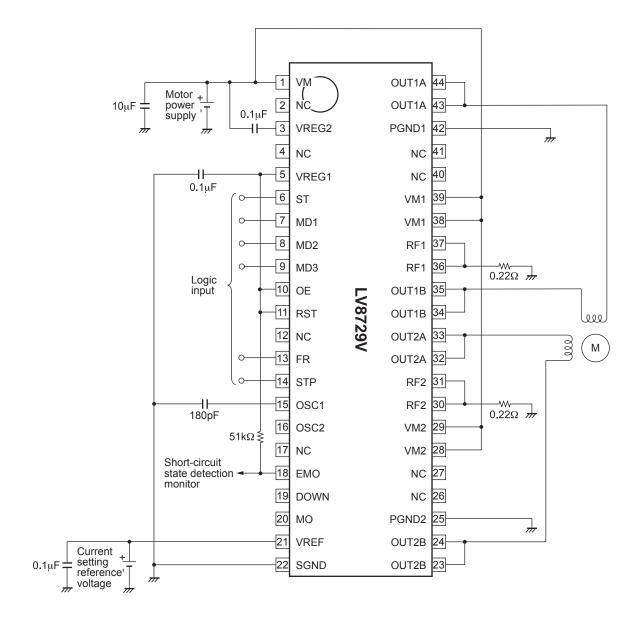
Holding current switching time (Tdown) is set as shown below by a capacitor between OSC2 pin and GND.

Tdown =
$$\cos 2 \times 0.4 \times 10^9$$
 (s)

(Example) When Cosc2 = 1500pF, the holding current switching time is shown below.

Tdown = 1500pF x 0.4 x 109 = 0.6 (s)

(16) Thermal shutdown function


The thermal shutdown circuit is incorporated and the output is turned off when junction temperature Tj exceeds 180°C and the abnormal state warning output is turned on. As the temperature falls by hysteresis, the output turned on again (automatic restoration).

The thermal shutdown circuit does not guarantee the protection of the final product because it operates when the temperature exceed the junction temperature of Tjmax=150°C.

 $TSD = 180^{\circ}C \text{ (typ)}$

 Δ TSD = 40°C (typ)

Application Circuit Example

The above sample application circuit is set to the following conditions:

- · Output enable function fixed to the output state (OE = "H")
- · Reset function fixed to the output state (RST = "H")
- · Chopping frequency: 55.5kHz (Cosc1 = 180pF)

The set current value is as follows:

 $I_{OUT} = (Current setting reference voltage / 5) / 0.22\Omega$

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV8729V-TLM-H	SSOP44K (275mil) (Pb-Free / Halogen Free)	2000 / Tape & Reel
LV8729V-MPB-H	SSOP44K (275mil) (Pb-Free / Halogen Free)	30 / Fan-Fold

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: