Data Sheet

RoHS 6 fully compliant options available; -xxxE denotes a lead-free product

Description

The HCPL-2533 is a dual channel optocoupler which is specified for use in LSTTL-to-LSTTL and TTL-to-LSTTL logic interfaces. A nominal 8 mA LSTTL sink current through the input LED will provide enough output current for proper operation of 1 LSTTL gate under worst-case conditions when used in the recommended circuits. The CTR of the HCPL-2533 is 15% minimum at $\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$.

The HCPL-2533 contains a pair of light emitting diodes and integrated photon detectors with a 3000 Vdc withstand test between input and output. Separate connection for the photodiode bias and output transistor collector reduce the base-collector capacitance, giving improved speed compared with conventional phototransistor couplers.

Schematic

Features

- Data rates to 250 kb/s NRZ
- LSTTL compatible
- High common mode transient immunity:
$>1000 \mathrm{~V} / \mu \mathrm{s}$
- High density packaging
- Open collection outputs
- Guaranteed performance from temperature:
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Safety approval
- UL Recognized - 3750 $\mathrm{V}_{\text {rms }}$ for $1 \mathrm{~min}\left(5000 \mathrm{~V}_{\text {rms }}\right.$ for 1 min Option 020 devices) per UL1577.
- IEC/EN/DIN EN 60747-5-2 Approved
- $V_{\text {IORM }}=630 V_{\text {peak }}$ for option 060

Applications

- High speed logic ground isolation - LSTTL-to-LSTTL and TTL-to-LSTTL
- High voltage isolation
- Analog signal ground isolation

Ordering Information

HCPL-2533 is UL Recognized with 3750 Vrms and 5000 Vrms (Option 020) for 1 minute per UL1577 and are approved under CSA Component Acceptance Notice \#5, File CA 88324.

Part number	Option		Package	Surface Mount	Gull Wing	Tape \& Reel	UL 5000 Vrms/ 1 Minute rating	IEC/EN/DIN EN 60747-5-2	Quantity
	RoHS Compliant	Non RoHS Compliant							
HCPL-2533	-000E	No option	$\begin{gathered} 300 \mathrm{mil} \\ \text { DIP-8 } \end{gathered}$						50 per tube
	-300E	-300		X	X				50 per tube
	-500E	-500		X	X	X			1000 per reel
	-020E	-020					X		50 per tube
	-320E	-320		X	X		X		50 per tube
	-520E	-520		X	X	X	X		1000 per reel
	-060E	-060						X	50 per tube
	-360E	-360		X	X			X	50 per tube
	-560E	-560		X	X	X		X	1000 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:
HCPL-2533-500E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with RoHS compliant.

Example 2:
HCPL-2533 to order product of 300 mil DIP package in tube packaging and non RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Remarks: The notation '\#XXX' is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use'-XXXE'.

Absolute Maximum Ratings

Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature .. $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Solder Temperature (1.6 mm below seating plane) .. $260^{\circ} \mathrm{C}$ for 10 s
Average Input Current - IF (each channel).. $25 \mathrm{~mA}^{[1]}$
Peak Input Current - I_{F} (each channel) (50% duty cycle, 1 ms pulse width) .. $50 \mathrm{~mA}{ }^{[2]}$

Reverse Input Voltage - VR (each channel) ... 5 V
Input Power Dissipation (each channel) .. 45 mW [3]
Average Output Current - IO (each channel) .. 8 mA
Peak Output Current - I_{0} (each channel) .. 16 mA

Output Power Dissipation (each channel) ... 35 mW [4]

Notes:

1. Derate linearly above $+70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $+70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $+70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $+70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Solder Reflow Thermal Profile

Note: Non-halide flux should be used.

Recommended Pb-Free IR Profile

Note: Non-halide flux should be used.

Regulatory Information

The devices contained in this data sheet have been approved by the following organizations:

UL
Recognized under UL 1577, Component Recognition Program, File E55361.

CSA

Approved under CSA Component Acceptance Notice \#5, File CA 88324

IEC/EN/DIN EN 60747-5-2
Approved under:
IEC 60747-5-2:1997 + A1:2002
EN 60747-5-2:2001 + A1:2002
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01.
(Option 060 only)

Insulation and Safety Related Specifications

Parameter	Symbol	Value	8-Pin DIP (300 Mil) Value	$\begin{aligned} & \text { SO-8 } \\ & \text { Units } \end{aligned}$	Conditions
Minimum External Air Gap (External Clearance)	L(101)	7.1	4.9	mm	Measured from input terminals to output to to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	7.4	4.8	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	0.08	mm	Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity.
Minimum Internal Tracking (Internal Creepage)		NA	NA	mm	Measured from input terminals to output terminals, along internal cavity.
Tracking Resistance (Comparative Tracking Index)	CTI	200	200	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group		IIIa	Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

Option 300 - surface mount classification is Class A in accordance with CECC 00802.

Description	Symbol	Characteristic HCPL-2533	Unit
Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage $\leq 150 \mathrm{~V}$ rms for rated mains voltage $\leq 300 \mathrm{~V}$ rms for rated mains voltage $\leq 600 \mathrm{~V}$ rms		$\begin{aligned} & \text { I-IV } \\ & \text { I-III } \end{aligned}$	
Climatic Classification		55/100/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	VIORM	630	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method b* $V_{\text {IORM }} \times 1.875=V_{\text {PR }}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	VPR	1181	$V_{\text {peak }}$
Input to Output Test Voltage, Method a* $\mathrm{V}_{\text {IORM }} \times 1.5=\mathrm{V}_{\text {PR, }}$, Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	945	$V_{\text {peak }}$
Highest Allowable Overvoltage (Transient Overvoltage, $\mathrm{t}_{\mathrm{ini}}=10 \mathrm{sec}$)	VIOTM	6000	$\mathrm{V}_{\text {peak }}$
Safety Limiting Values (Maximum values allowed in the event of a failure.) Case Temperature Input Current** Output Power**	Ts IS,INPUT Ps,output	$\begin{aligned} & 175 \\ & 230 \\ & 600 \end{aligned}$	${ }^{\circ} \mathrm{C}$ mA mW
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	RS	$>10^{9}$	Ω

[^0]Note: Isolation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits in application.

Electrical Specifications, LSTTL-to-LSTTL

Over recommended temperature $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR	15	22		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \end{aligned}$	1	5,6
		11	15		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$		
Logic Low Output Voltage	VoL		0.2	0.5	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=0.7 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$		5
Logic Low Supply Current	ICCL		40		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=8 \mathrm{~mA} \\ & \mathrm{~V}_{01}=\mathrm{V}_{02}=\mathrm{Open}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$		
Input Forward Voltage	V_{F}		1.5	1.7	V	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2	5
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		5

*All typicals at $25^{\circ} \mathrm{C}$.

Switching Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=7.5 \mathrm{k} \Omega$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\text {PHL }}$		0.8	1.5	$\mu \mathrm{S}$		4,6	10
Propagation Delay Time to Logic High at Output	$\mathrm{t}_{\text {PLH }}$		1.0	2.5	$\mu \mathrm{s}$		4,6	10
Common Mode Transient Immunity at Logic High Level Output	CM_{H}		1000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	7	9,10
Common Mode Transient Immunity at Logic Low Level Output	CML		-1000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CM}}=10 \mathrm{~V}_{\text {P-P }}$	7	9,10

Electrical Specifications, TTL-to-LSTTL

Over recommended temperature ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR	12	18		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1	5,6
		9	13		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$		
Logic Low Output Voltage	V_{OL}		0.2	0.5	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$		5
Logic Low Supply Current	$\mathrm{I}_{\text {CCL }}$		80		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=16 \mathrm{~mA} \\ & \mathrm{~V}_{01}=\mathrm{V}_{02}=\text { Open, } \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$		
Input Forward Voltage	V_{F}		1.5	1.7	V	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2	5
Temperature Coefficient of Forward Voltage	$\frac{\Delta \mathrm{V}_{\mathrm{F}}}{\Delta \mathrm{~T}_{\mathrm{A}}}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$		5

*All typicals at $25^{\circ} \mathrm{C}$.

Switching Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to Logic Low at Output	$t_{\text {PHL }}$		0.3	1.5	$\mu \mathrm{S}$		4,6	11
Propagation Delay Time to Logic High at Output	tPLH		1.1	2.5	$\mu \mathrm{s}$		4,6	11
Common Mode Transient Immunity at Logic High Level Output	CM_{H}		1000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	7	9,11
Common Mode Transient Immunity at Logic Low Level Output	CML		-1000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CM}}=10 \mathrm{~V}_{\text {P-P }}$	7	9,11

Electrical Specifications

Over recommended temperature ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) unless otherwise specified.

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Logic High Output Current	IOH		0.5		nA	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{O} 1}=\mathrm{V}_{\mathrm{O} 2}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	5	5
				50	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=\mathrm{mA} \\ & \mathrm{~V}_{\mathrm{O} 1}=\mathrm{V}_{\mathrm{O} 2}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$		5
Logic High Supply Current	ICCH		0.05	4	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{O} 1}=\mathrm{V}_{\mathrm{O} 2}=\mathrm{Open}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$		
Input Reverse Breakdown Voltage	V_{R}	5			V	$\mathrm{I}_{\mathrm{F}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5
Input Capacitance	$\mathrm{Cl}_{\text {IN }}$		60		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		5
Input-Output Insulation Leakage Current	$\mathrm{I}_{1-\mathrm{O}}$			1.0	$\mu \mathrm{A}$	45\% Relative Humidity, $\begin{aligned} & \mathrm{t}=5 \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{I}-\mathrm{O}}=3000 \mathrm{Vdc}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		7
Resistance (Input-Output)	$\mathrm{R}_{\mathrm{l}-\mathrm{O}}$		10^{12}		Ω	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{Vdc}$		7
Capacitance (Input-Output)	$\mathrm{Cl}_{1-\mathrm{O}}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		7
Input-Input Insulation Leakage Current	1 I-I		0.005		$\mu \mathrm{A}$	45\% Relative Humidity, $\begin{aligned} & \mathrm{t}=5 \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{I}-\mathrm{I}}=500 \mathrm{Vdc} \end{aligned}$		8
Resistance (Input-Input)	$\mathrm{R}_{\mathrm{l}-\mathrm{I}}$		10^{11}		Ω	$\mathrm{V}_{1-1}=500 \mathrm{Vdc}$		8
Capacitance (Input-Input)	Cl_{1-1}		0.25		pF	$\mathrm{f}=1 \mathrm{MHz}$		8

${ }^{*}$ All typicals at $25^{\circ} \mathrm{C}$.

Notes:

5. Each channel.
6. Current Transfer Ratio is defined as the ratio of output collector current, I_{O}, to the forward LED input current, I_{F}, times 100%.
7. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
8. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse V_{CM}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
10. The 7.5 k load represents 1 LSTTL unit load of 0.36 mA and a $20 \mathrm{k} \Omega$ pull-up resistor.
11. The 4.7 k load represents 1 LSTTL unit load of 0.36 mA and an $8.2 \mathrm{k} \Omega$ pull-up resistor.

Figure 1. Current transfer ratio vs. input current

Figure 4. Propagation delay vs. temperature

Figure 6. Switching test circuit

Figure 7. Test circuit for transient immunity and typical waveforms

A) TYPICAL NON-INVERTING CIRCUIT

Figure 8. Recommended circuits

Recommended Operation

The HCPL-2533 optocoupler is specified for use in LSTTL-to-LSTTL and TTL-to-LSTTL interfaces. The recommended circuits show the interface design and give suggested component values. The input current I_{F} is given as both a nominal value and a range. The range in I_{F} results from the tolerances in V_{CC} and the input resistor R_{IN}. The CTR of the optocoupler is given as the minimum
initial value over temperature, taken directly from the Electrical Specifications. The value given for $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{min})$ is based on the minimum CTR and the minimum I_{F} using worst case values for R_{L} and V_{CC}. The resulting l_{OL} (min) has ample design margin, allowing more than 20% for CTR degradation even under these worst case conditions. For additional information on CTR degradation see Application Note 1002.

Recommended Circuit Design Parameters

Notes:

12. The inverting circuit has higher power consumption and must use open collector gates on the input.
13. The load resistor R_{L} must be large enough to guarantee logic LOW and small enough to guarantee logic HIGH under worst case conditions:

$$
\frac{V_{\mathrm{CC}}(\max)-\mathrm{V}_{\mathrm{OL}}}{\mathrm{I}_{\mathrm{OL}}(2533)-\mathrm{I}_{\mathrm{IL}}(\mathrm{~B})} \quad \leq \mathrm{R}_{\mathrm{L}} \leq \frac{\mathrm{V}_{\mathrm{CC}}(\min)-\mathrm{V}_{\mathrm{IH}}(\mathrm{~B})}{\mathrm{I}_{\mathrm{OH}}(2533)-\mathrm{I}_{\mathrm{IH}}(\mathrm{~B})}
$$

The selection of R_{L} is the same for both inverting and non-inverting circuits.
14. The maximum current sink required for logic LOW is:

$$
\mathrm{l}_{\mathrm{OL}}(\max)=\mathrm{I}_{\mathrm{IL}}(\mathrm{~B})(\max)+\mathrm{I}_{\mathrm{R}}(\max)
$$

where I_{R} is the current through R_{L}.
15. The ratio of $\mathrm{I}_{\mathrm{OL}}(\min)$ to $\mathrm{I}_{\mathrm{OL}}(\max)$ gives the design margin for CTR degradation. See Application Note 1002.
16. The maximum data rate is defined as:

$$
f_{D}=\frac{1}{t_{P H L}+t_{P L H}} \quad \text { bits/second NRZ }
$$

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Broadcom Limited:
HCPL-2533 HCPL-2533\#300 HCPL-2533\#500 HCPL-2533-000E HCPL-2533-300E HCPL-2533-500E

[^0]: * Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, IEC/EN/DIN EN 60747-5-2, for a detailed description of Method a and Method b partial discharge test profiles.
 ** Refer to the following figure for dependence of P_{S} and I_{S} on ambient temperature.

