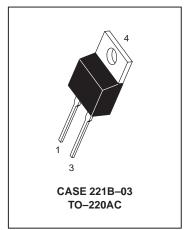
SWITCHMODE™ Power Rectifiers

Ultrafast "E" Series with High Reverse Energy Capability

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- 20 mjoules Avalanche Energy Guaranteed
- Excellent Protection Against Voltage Transients in Switching Inductive Load Circuits
- Ultrafast 75 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- Epoxy Meets UL94, Vo @ 1/8"
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 1000 Volts

Mechanical Characteristics:


- · Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: U880E, U8100E

MUR8100E MUR880E

MUR8100E is a Motorola Preferred Device

ULTRAFAST RECTIFIERS 8.0 AMPERES 900-1000 VOLTS

MAXIMUM RATINGS

		MUR		
Rating	Symbol	880E	8100E	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	800	1000	Volts
Average Rectified Forward Current Total Device, (Rated V _R), T _C = 150°C	l _{F(AV)}	8.0		Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz), T _C = 150°C	IFM	16		Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	100		Amps
Operating Junction Temperature and Storage Temperature	TJ, T _{stg}	–65 to	+175	°C

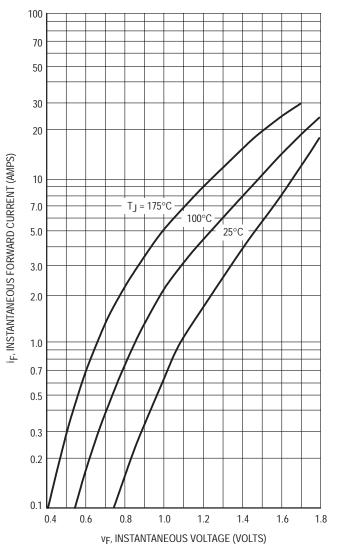
THERMAL CHARACTERISTICS

				-
Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	2.0	°C/W	l

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

SWITCHMODE is a trademark of Motorola, Inc.

Preferred devices are Motorola recommended choices for future use and best overall value.


MUR8100E MUR880E

ELECTRICAL CHARACTERISTICS

		MUR		
Rating	Symbol	880E	8100E	Unit
Maximum Instantaneous Forward Voltage (1) (iF = 8.0 Amps, T_C = 150°C) (iF = 8.0 Amps, T_C = 25°C)	VF	l	.5 .8	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, $T_C = 100^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	İR	50 2		μА
Maximum Reverse Recovery Time (IF = 1.0 Amp, di/dt = 50 Amps/ μ s) (IF = 0.5 Amp, i _R = 1.0 Amp, I _{REC} = 0.25 Amp)	t _{rr}	I	00 5	ns
Controlled Avalanche Energy (See Test Circuit in Figure 6)	WAVAL	2	0	mJ

⁽¹⁾ Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%.

MUR8100E MUR880E

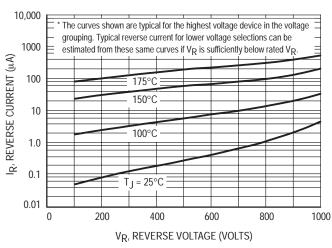


Figure 2. Typical Reverse Current*

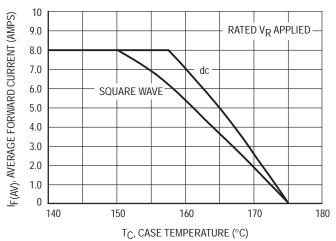
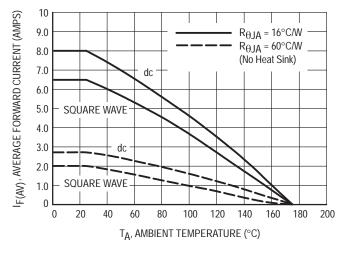



Figure 1. Typical Forward Voltage

Figure 3. Current Derating, Case

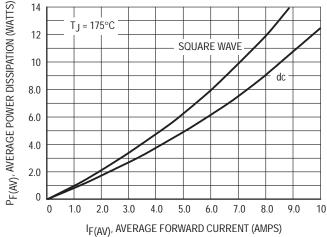


Figure 4. Current Derating, Ambient

Figure 5. Power Dissipation

MUR8100E MUR880E

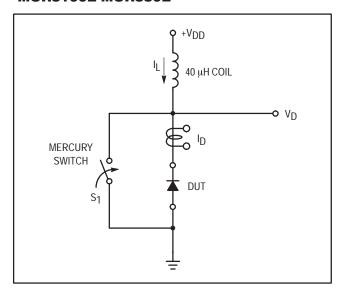


Figure 6. Test Circuit

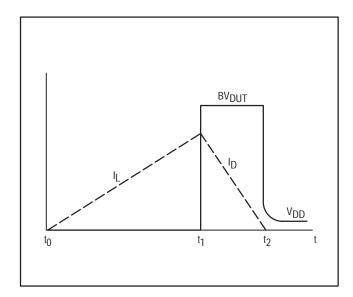


Figure 7. Current-Voltage Waveforms

The unclamped inductive switching circuit shown in Figure 6 was used to demonstrate the controlled avalanche capability of the new "E" series Ultrafast rectifiers. A mercury switch was used instead of an electronic switch to simulate a noisy environment when the switch was being opened.

When S_1 is closed at t_0 the current in the inductor I_L ramps up linearly; and energy is stored in the coil. At t_1 the switch is opened and the voltage across the diode under test begins to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at BV_{DUT} and the diode begins to conduct the full load current which now starts to decay linearly through the diode, and goes to zero at t_2 .

By solving the loop equation at the point in time when S_1 is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is equal to the energy stored in the inductor plus a finite amount of energy from the V_{DD} power supply while the diode is in

breakdown (from t_1 to t_2) minus any losses due to finite component resistances. Assuming the component resistive elements are small Equation (1) approximates the total energy transferred to the diode. It can be seen from this equation that if the V_{DD} voltage is low compared to the breakdown voltage of the device, the amount of energy contributed by the supply during breakdown is small and the total energy can be assumed to be nearly equal to the energy stored in the coil during the time when S_1 was closed, Equation (2).

The oscilloscope picture in Figure 8, shows the MUR8100E in this test circuit conducting a peak current of one ampere at a breakdown voltage of 1300 volts, and using Equation (2) the energy absorbed by the MUR8100E is approximately 20 mjoules.

Although it is not recommended to design for this condition, the new "E" series provides added protection against those unforeseen transient viruses that can produce unexplained random failures in unfriendly environments.

EQUATION (1):

$$W_{AVAL} \approx \frac{1}{2}LI_{LPK}^{2}\left(\frac{BV_{DUT}}{BV_{DUT}-V_{DD}}\right)$$

EQUATION (2):

$$W_{AVAL} \approx \frac{1}{2}LI_{LPK}^2$$

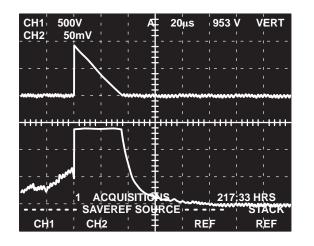


Figure 8. Current-Voltage Waveforms

CHANNEL 2: IL 0.5 AMPS/DIV.

CHANNEL 1: V_{DUT} 500 VOLTS/DIV.

 $\frac{\text{TIME BASE}}{\text{20 }\mu\text{s/DIV}}.$

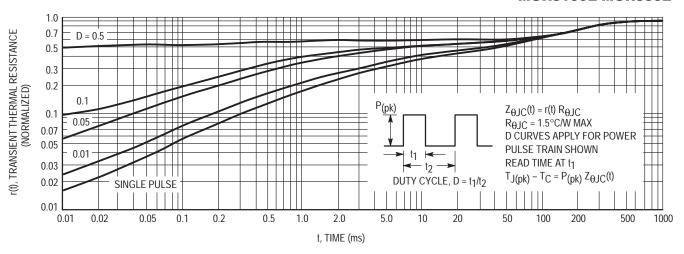


Figure 9. Thermal Response

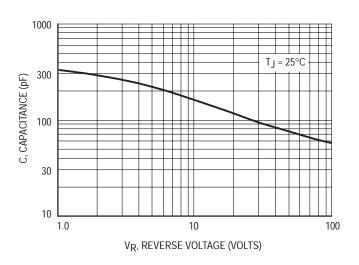
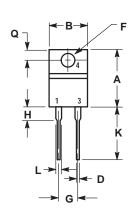
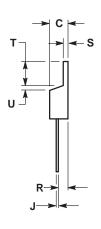




Figure 10. Typical Capacitance

PACKAGE DIMENSIONS

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.595	0.620	15.11	15.75	
В	0.380	0.405	9.65	10.29	
С	0.160	0.190	4.06	4.82	
D	0.025	0.035	0.64	0.89	
F	0.142	0.147	3.61	3.73	
G	0.190	0.210	4.83	5.33	
Н	0.110	0.130	2.79	3.30	
J	0.018	0.025	0.46	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.14	1.52	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.14	1.39	
T	0.235	0.255	5.97	6.48	
U	0.000	0.050	0.000	1.27	

CASE 221B-04 (TO-220AC) **ISSUE C**

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609 - US & Canada ONLY 1-800-774-1848 Motorola Fax Back System – http://sps.motorola.com/mfax/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334

HOME PAGE: http://motorola.com/sps/

MUR8100E/D