

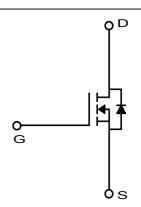
MDIS4N60

N-Channel MOSFET 600V, 3.5A, 2.0Ω

General Description

These N-channel MOSFET are produced using advanced MagnaChip's MOSFET Technology, which provides low onstate resistance, high switching performance and excellent quality.

These devices are suitable device for SMPS, high Speed switching and general purpose applications.


Features

- V_{DS} = 600V
- $I_D = 3.5A$
- @ V_{GS} = 10V
- $R_{DS(ON)} ≤ 2.0Ω$
- $@V_{GS} = 10V$

Applications

- Power Supply
- PFC
- High Current, High Speed Switching

Absolute Maximum Ratings (Ta = 25°C)

Characteristics			Rating	Unit
Drain-Source Voltage		V_{DSS}	600	V
Gate-Source Voltage		V_{GSS}	±30	V
Continuous Drain Current	T _C =25°C	_	3.5	Α
Continuous Drain Current	T _C =100°C	- I _D	2.2	Α
Pulsed Drain Current ⁽¹⁾		I _{DM}	14	Α
Davier Discination	T _C =25°C	P _D	67.5	W W/°C
Power Dissipation	Derate above 25 °C		0.54	
Repetitive Avalanche Energy ⁽¹⁾			6.75	mJ
Peak Diode Recovery dv/dt ⁽³⁾		dv/dt	4.5	V/ns
Single Pulse Avalanche Energy ⁽⁴⁾		E _{AS}	170	mJ
Junction and Storage Temperature Range		T _J , T _{stg}	-55~150	°C

^{*} Id limited by maximum junction temperature

Thermal Characteristics

Characteristics		MDD4N60 / MDI4N60	Unit	
Thermal Resistance, Junction-to-Ambient ⁽¹⁾	$R_{\theta JA}$	110	110 °C/W	
Thermal Resistance, Junction-to-Case ⁽¹⁾	$R_{ heta JC}$	1.85	C/VV	

Ordering Information

Part Number	Temp. Range	Package	Packing	RoHS Status
MDIS4N60TH	-55~150°C	I-Pak Very Short lead	Tube	Halogen Free

Electrical Characteristics (Ta =25°C)

Characteristics	Symbol	Test Condition	Min	Тур	Max	Unit
Static Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V	600	-	-	V
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.0	-	5.0	
Drain Cut-Off Current	I _{DSS}	V _{DS} = 600V, V _{GS} = 0V	-	-	1	μA
Gate Leakage Current	I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$	-	-	100	nA
Drain-Source ON Resistance	R _{DS(ON)}	V _{GS} = 10V, I _D = 1.75A		1.7	2.0	Ω
Forward Transconductance	g _{fs}	V _{DS} = 30V, I _D = 1.75A	-	4	-	S
Dynamic Characteristics						
Total Gate Charge	Q_g	V_{DS} = 480V, I_{D} = 4.0A, V_{GS} = 10V ⁽³⁾	-	12.1		
Gate-Source Charge	Q _{gs}		-	3.5		nC
Gate-Drain Charge	Q_{gd}		-	4.4		
Input Capacitance	C _{iss}		-	506	660	
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 25V, V_{GS} = 0V, f = 1.0MHz$	-	2.3	3	pF
Output Capacitance	C _{oss}		-	58	75	=
Turn-On Delay Time	t _{d(on)}	$V_{GS}=10V, V_{DS}=300V, I_D=4.0A, \label{eq:VGS}$ $R_G=25\Omega^{(3)}$	-	12		
Rise Time	t _r		-	20		
Turn-Off Delay Time	$t_{d(off)}$		-	27		ns
Fall Time	t _f		-	20		1
Drain-Source Body Diode Character	istics				•	
Maximum Continuous Drain to Source Diode Forward Current	Is		-	4.6	-	А
Source-Drain Diode Forward Voltage	V _{SD}	I _S = 4.0A, V _{GS} = 0V	-		1.4	V
Body Diode Reverse Recovery Time	t _{rr}	$I_F = 4.0A$, dl/dt = 100A/ μ s ⁽³⁾	-	243		ns
Body Diode Reverse Recovery Charge	Q _{rr}		-	1.5		μC

Note:

- 1. Pulse width is based on R_{BJC} & R_{BJA} and the maximum allowed junction temperature of 150°C. 2. Pulse test: pulse width \leq 300us, duty cycle \leq 2%, pulse width limited by junction temperature $T_{J(\text{MAX})}$ =150°C.
- 3. I_{SD} ≤4.0A, di/dt≤200A/us, V_{DD} =50V, R_g =25 Ω , Starting T_J =25 $^{\circ}C$
- 4. L=17.9mH, I_{AS} =4.0A, V_{DD} =50V, R_g =25 Ω , Starting T_J =25 $^{\circ}$ C,

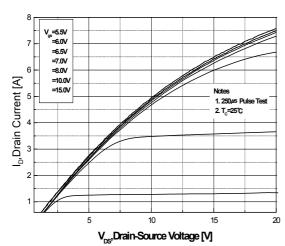


Fig.1 On-Region Characteristics

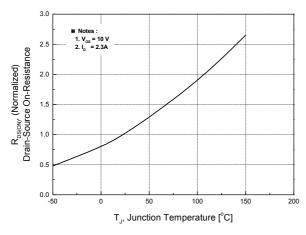


Fig.3 On-Resistance Variation with Temperature

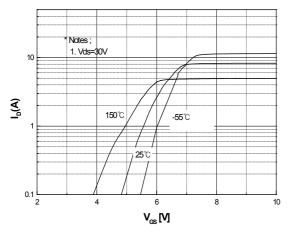


Fig.5 Transfer Characteristics

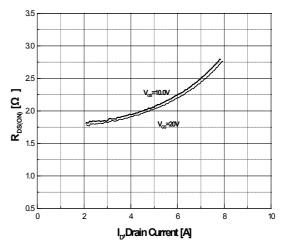


Fig.2 On-Resistance Variation with Drain Current and Gate Voltage

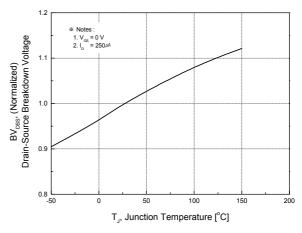


Fig.4 Breakdown Voltage Variation vs. Temperature

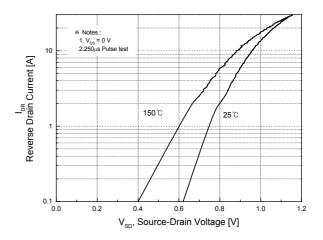


Fig.6 Body Diode Forward Voltage Variation with Source Current and Temperature

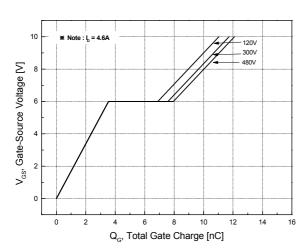


Fig.7 Gate Charge Characteristics

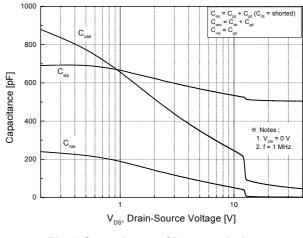


Fig.8 Capacitance Characteristics

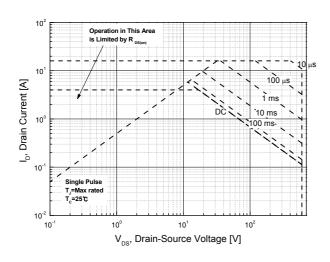


Fig.9 Maximum Safe Operating Area

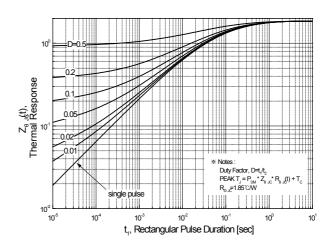


Fig.10 Transient Thermal Response Curve

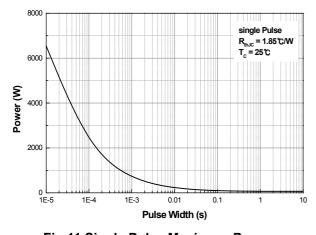


Fig.11 Single Pulse Maximum Power Dissipation

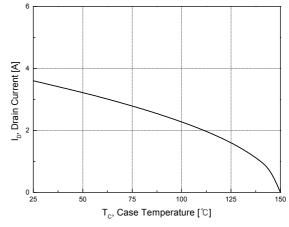
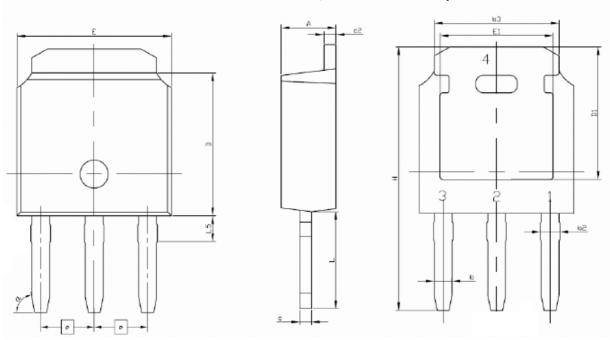



Fig.12 Maximum Drain Current vs. Case Temperature

Physical Dimension

TO251-3L (IPAK-VSL)

Dimensions are in millimeters, unless otherwise specified

Symbol	MILLIMETERS			
Symbol	Minimum	Maximum		
Α	2.18	2.39		
Ф	0.64	0.89		
b2	0.76	1.14		
b3	4.95	5.46		
O	0.40	0.61		
c2	0.40	0.61		
D	5.97	6.223		
D1	5.10	•		
е	2.286 BSC			
E	6.35	6.73		
E1	4.32	-		
Н	10.26 11.45			
L	3.98 4.28			
L5	- 1.23			

DISCLAIMER:

The Products are not designed for use in hostile environments, including, without limitation, aircraft, nuclear power generation, medical appliances, and devices or systems in which malfunction of any Product can reasonably be expected to result in a personal injury. Seller's customers using or selling Seller's products for use in such applications do so at their own risk and agree to fully defend and indemnify Seller.

MagnaChip reserves the right to change the specifications and circuitry without notice at any time. MagnaChip does not consider responsibility for use of any circuitry other than circuitry entirely included in a MagnaChip product. MagnaChip is a registered trademark of MagnaChip Semiconductor Ltd.